Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38648876

RESUMEN

OBJECTIVE: To examine associations between serum oxylipins, which regulate tissue repair and pain signalling, and knee pain/radiographic osteoarthritis (OA) at baseline and knee pain at 3 year follow-up. METHOD: Baseline, and 3 year follow-up, knee pain phenotypes were assessed from 154 participants in the Knee Pain in the Community (KPIC) cohort study. Serum and radiographic Kellgren and Lawrence (KL) and Nottingham line drawing atlas OA scores were collected at baseline. Oxylipin levels were quantified using liquid chromatography coupled with mass spectrometry. Associations were measured by linear regression and receiver operating characteristics (ROC). RESULTS: Serum levels of 8,9-epoxyeicosatrienoic acid (EET) (ß(95% confidence intervals (CI)) = 1.809 (-0.71 to 2.91)), 14,15-dihydroxyeicosatrienoic acid (DHET) (ß(95%CI) = 0.827 (0.34-1.31)), and 12-hydroxyeicosatetraenoic acid (HETE) (ß(95%CI) = 4.090 (1.92-6.26)) and anandamide (ß(95%CI) = 3.060 (1.35-4.77)) were cross-sectionally associated with current self-reported knee pain scores (numerical rating scale (NRS) item 3, average pain). Serum levels of 9- (ß(95%CI) = 0.467 (0.18-0.75)) and 15-HETE (ß(95%CI) = 0.759 (0.29-1.22)), 14-hydroxydocosahexaenoic acid (ß(95%CI) = 0.483(0.24-0.73)), and the ratio of 8,9-EET:DHET (ß(95%CI) = 0.510(0.19-0.82)) were cross-sectionally associated with KL scores. Baseline serum concentrations of 8,9-EET (ß(95%CI) = 2.166 (0.89-3.44)), 5,6-DHET (ß(95%CI) = 152.179 (69.39-234.97)), and 5-HETE (ß(95%CI) = 1.724 (0.677-2.77) showed positive longitudinal associations with follow-up knee pain scores (NRS item 3, average pain). Combined serum 8,9-EET and 5-HETE concentration showed the strongest longitudinal association (ß(95%CI) = 1.156 (0.54-1.77) with pain scores at 3 years, and ROC curves distinguished between participants with no pain and high pain scores at follow-up (area under curve (95%CI) = 0.71 (0.61-0.82)). CONCLUSIONS: Serum levels of a combination of hydroxylated metabolites of arachidonic acid may have prognostic utility for knee pain, providing a potential novel approach to identify people who are more likely to have debilitating pain in the future.

2.
Microbiology (Reading) ; 169(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018121

RESUMEN

In Pseudomonas aeruginosa, quorum sensing (QS) depends on an interconnected regulatory hierarchy involving the Las, Rhl and Pqs systems, which are collectively responsible for the co-ordinated synthesis of a diverse repertoire of N-acylhomoserine lactones (AHLs) and 2-alkyl-4-quinolones (AQs). Apparent population density-dependent phenomena such as QS may, however, be due to growth rate and/or nutrient exhaustion in batch culture. Using continuous culture, we show that growth rate and population density independently modulate the accumulation of AHLs and AQs such that the highest concentrations are observed at a slow growth rate and high population density. Carbon source (notably succinate), nutrient limitation (C, N, Fe, Mg) or growth at 25 °C generally reduces AHL and AQ levels, except for P and S limitation, which result in substantially higher concentrations of AQs, particularly AQ N-oxides, despite the lower population densities achieved. Principal component analysis indicates that ~26 % variation is due to nutrient limitation and a further 30 % is due to growth rate. The formation of N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) turnover products such as the ring opened form and tetramic acid varies with the limiting nutrient limitation and anaerobiosis. Differential ratios of N-butanoyl-homoserine lactone (C4-HSL), 3OC12-HSL and the AQs as a function of growth environment are clearly apparent. Inactivation of QS by mutation of three key genes required for QS signal synthesis (lasI, rhlI and pqsA) substantially increases the concentrations of key substrates from the activated methyl cycle and aromatic amino acid biosynthesis, as well as ATP levels, highlighting the energetic drain that AHL and AQ synthesis and hence QS impose on P. aeruginosa.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/genética , Lactonas/química , Lactonas/metabolismo , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética
3.
J Infect Dis ; 225(12): 2142-2154, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34979019

RESUMEN

BACKGROUND: Specialized proresolution molecules (SPMs) halt the transition to chronic pathogenic inflammation. We aimed to quantify serum levels of pro- and anti-inflammatory bioactive lipids in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients, and to identify potential relationships with innate responses and clinical outcome. METHODS: Serum from 50 hospital admitted inpatients (22 female, 28 male) with confirmed symptomatic SARS-CoV-2 infection and 94 age- and sex-matched controls collected prior to the pandemic (SARS-CoV-2 negative), were processed for quantification of bioactive lipids and anti-nucleocapsid and anti-spike quantitative binding assays. RESULTS: SARS-CoV-2 serum had significantly higher concentrations of omega-6-derived proinflammatory lipids and omega-6- and omega-3-derived SPMs, compared to the age- and sex-matched SARS-CoV-2-negative group, which were not markedly altered by age or sex. There were significant positive correlations between SPMs, proinflammatory bioactive lipids, and anti-spike antibody binding. Levels of some SPMs were significantly higher in patients with an anti-spike antibody value >0.5. Levels of linoleic acid and 5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid were significantly lower in SARS-CoV-2 patients who died. CONCLUSIONS: SARS-CoV-2 infection was associated with increased levels of SPMs and other pro- and anti-inflammatory bioactive lipids, supporting the future investigation of the underlying enzymatic pathways, which may inform the development of novel treatments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Inmunidad Adaptativa , Anticuerpos Antivirales , Eicosanoides , Femenino , Humanos , Masculino , Glicoproteína de la Espiga del Coronavirus
4.
PLoS Comput Biol ; 17(1): e1007694, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33493151

RESUMEN

Metabolic engineering in the post-genomic era is characterised by the development of new methods for metabolomics and fluxomics, supported by the integration of genetic engineering tools and mathematical modelling. Particularly, constraint-based stoichiometric models have been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux analysis (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics and metabolomics data to improve the predictive capabilities of these approaches. However, an in-depth comparison and evaluation of these methods is lacking. This study presents a thorough analysis of two different in silico methods tested against experimental data (metabolomics and 13C-MFA) for the mesophile Escherichia coli. In particular, a modified version of the recently published matTFA toolbox was created, providing a broader range of physicochemical parameters. Validating against experimental data allowed the determination of the best physicochemical parameters to perform the TFA (Thermodynamics-based Flux Analysis). An analysis of flux pattern changes in the central carbon metabolism between 13C-MFA and TFA highlighted the limited capabilities of both approaches for elucidating the anaplerotic fluxes. In addition, a method based on centrality measures was suggested to identify important metabolites that (if quantified) would allow to further constrain the TFA. Finally, this study emphasised the need for standardisation in the fluxomics community: novel approaches are frequently released but a thorough comparison with currently accepted methods is not always performed.


Asunto(s)
Análisis de Flujos Metabólicos/métodos , Metabolómica/métodos , Modelos Biológicos , Algoritmos , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Simulación por Computador , Escherichia coli/metabolismo , Ingeniería Metabólica , Procesos Estocásticos , Termodinámica
5.
Prostaglandins Other Lipid Mediat ; 158: 106607, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942378

RESUMEN

In addition to haemostasis, platelets are involved in pathological processes, often driven by material released upon activation. Interaction between collagen and glycoprotein VI (GPVI) is a primary platelet stimulus that liberates arachidonic acid and linoleic acid from membrane phospholipids. These are oxidised by cyclooxygenase-1 (COX-1) and 12-lipoxygenase (12-LOX) to eicosanoids and other oxylipins with various biological properties. Using liquid chromatography-tandem mass spectrometry we found that GPVI-stimulated platelets released significant levels of ten oxylipins; the well documented TxA2 and 12-HETE, PGD2 and PGE2, as well as 8-, 9-, 11-, and 15-HETE, 9- and 13-HODE.1 Levels of oxylipins released from washed platelets mirrored those from platelets stimulated in the presence of plasma, indicating generation from intracellular, rather than exogenous AA/LA. Inhibition of COX-1 with aspirin, as expected, completely abolished production of TxA2 and PGD/E2, but also significantly inhibited the release of 11-HETE (89 ± 3%) and 9-HODE (74 ± 6%), and reduced 15-HETE and 13-HODE by ∼33 %. Inhibition of 12-LOX by either esculetin or ML355 inhibited the release of all oxylipins apart from 15-HETE. These findings suggest routes to modify the production of bioactive molecules released by activated platelets.


Asunto(s)
Plaquetas , Oxilipinas , Glicoproteínas , Humanos , Glicoproteínas de Membrana Plaquetaria , Receptores de Colágeno
6.
Metabolomics ; 17(3): 29, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33655418

RESUMEN

INTRODUCTION: Osteoarthritis (OA) is a common cause of disability in older people, but its aetiology is not yet fully understood. Biomarkers of OA from metabolomics studies have shown potential use in understanding the progression and pathophysiology of OA. OBJECTIVES: To investigate possible surrogate biomarkers of knee OA in urine using metabolomics to contribute towards a better understanding of OA progression and possible targeted treatment. METHOD: Liquid chromatography-high resolution mass spectrometry (LC-HRMS) was applied in a case-control approach to explore the possible metabolic differences between the urinary profiles of symptomatic knee OA patients (n = 74) (subclassified into inflammatory OA, n = 22 and non-inflammatory OA, n = 52) and non-OA controls (n = 68). Univariate, multivariate and pathway analyses were performed with a rigorous validation including cross-validation, permutation test, prediction and receiver operating characteristic curve to identify significantly altered metabolites and pathways in OA. RESULTS: OA datasets generated 7405 variables and multivariate analysis showed clear separation of inflammatory OA, but not non-inflammatory OA, from non-OA controls. Adequate cross-validation (R2Y = 0.874, Q2 = 0.465) was obtained. The prediction model and the ROC curve showed satisfactory results with a sensitivity of 88%, specificity of 71% and accuracy of 77%. 26 metabolites were identified as potential biomarkers of inflammatory OA using HMDB, authentic standards and/or MS/MS database. CONCLUSION: Urinary metabolic profiles were altered in inflammatory knee OA subjects compared to those with non-inflammatory OA and non-OA controls. These altered profiles associated with perturbed activity of the TCA cycle, pyruvate and amino acid metabolism linked to inflammation, oxidative stress and collagen destruction. Of note, 2-keto-glutaramic acid level was > eightfold higher in the inflammatory OA patients compared to non-OA control, signalling a possible perturbation in glutamine metabolism related to OA progression.


Asunto(s)
Líquidos Corporales/química , Líquidos Corporales/metabolismo , Cromatografía Liquida/métodos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Osteoartritis , Osteoartritis de la Rodilla , Estrés Oxidativo , Curva ROC
7.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673278

RESUMEN

One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.


Asunto(s)
Blastocisto/metabolismo , Carbono/metabolismo , Metilación de ADN , Epigénesis Genética , Células de la Granulosa/metabolismo , Oocitos/metabolismo , Células Tecales/metabolismo , Animales , Bovinos , Femenino , Células Hep G2 , Humanos , Ratas , Porcinos
8.
Am J Physiol Endocrinol Metab ; 318(3): E417-E429, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31910028

RESUMEN

Muscle anabolic resistance to dietary protein is associated with obesity and insulin resistance. However, the contribution of excess consumption of fat to anabolic resistance is not well studied. The aim of these studies was to test the hypothesis that acute and short-term dietary fat overload will impair the skeletal muscle protein synthetic response to dietary protein ingestion. Eight overweight/obese men [46.4 ± 1.4 yr, body mass index (BMI) 32.3 ± 5.4 kg/m2] participated in the acute feeding study, which consisted of two randomized crossover trials. On each occasion, subjects ingested an oral meal (with and without fat emulsion), 4 h before the coingestion of milk protein, intrinsically labeled with [1-13C]phenylalanine, and dextrose. Nine overweight/obese men (44.0 ± 1.7 yr, BMI 30.1 ± 1.1 kg/m2) participated in the chronic study, which consisted of a baseline, 1-wk isocaloric diet, followed by a 2-wk high-fat diet (+25% energy excess). Acutely, incorporation of dietary amino acids into the skeletal muscle was twofold higher (P < 0.05) in the lipid trial compared with control. There was no effect of prior lipid ingestion on indices of insulin sensitivity (muscle glucose uptake, pyruvate dehydrogenase complex activity, and Akt phosphorylation) in response to the protein/dextrose drink. Fat overfeeding had no effect on muscle protein synthesis or glucose disposal in response to whey protein ingestion, despite increased muscle diacylglycerol C16:0 (P = 0.06) and ceramide C16:0 (P < 0.01) levels. Neither acute nor short-term dietary fat overload has a detrimental effect on the skeletal muscle protein synthetic response to dietary protein ingestion in overweight/obese men, suggesting that dietary-induced accumulation of intramuscular lipids per se is not associated with anabolic resistance.


Asunto(s)
Grasas de la Dieta/farmacología , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Sobrepeso/metabolismo , Periodo Posprandial , Aminoácidos/metabolismo , Estudios Cruzados , Glucosa/metabolismo , Humanos , Hiperfagia , Resistencia a la Insulina , Cinética , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Proteínas de la Leche/farmacología , Músculo Esquelético/efectos de los fármacos
9.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635401

RESUMEN

Women with polycystic ovary syndrome (PCOS) are more likely to develop endometrial cancer (EC). The molecular mechanisms which increase the risk of EC in PCOS are unclear. Derangements in lipid metabolism are associated with EC, but there have been no studies, investigating if this might increase the risk of EC in PCOS. This was a cross-sectional study of 102 women in three groups of 34 (PCOS, EC and controls) at Nottingham University Hospital, UK. All participants had clinical assessments, followed by obtaining plasma and endometrial tissue samples. Lipidomic analyses were performed using liquid chromatography (LC) coupled with high resolution mass spectrometry (HRMS) and the obtained lipid datasets were screened using standard software and databases. Using multivariate data analysis, there were no common markers found for EC and PCOS. However, on univariate analyses, both PCOS and EC endometrial tissue samples showed a significant decrease in monoacylglycerol 24:0 and capric acid compared to controls. Further studies are required to validate these findings and investigate the potential role of monoacylglycerol 24:0 and capric acid in the link between PCOS with EC.


Asunto(s)
Neoplasias Endometriales/metabolismo , Metabolismo de los Lípidos , Síndrome del Ovario Poliquístico/metabolismo , Adulto , Anciano , Biomarcadores/metabolismo , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , Estudios Transversales , Ácidos Decanoicos/metabolismo , Neoplasias Endometriales/etiología , Femenino , Humanos , Lipidómica , Persona de Mediana Edad , Monoglicéridos/metabolismo , Análisis Multivariante , Síndrome del Ovario Poliquístico/complicaciones
10.
Metabolomics ; 15(12): 157, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31773355

RESUMEN

INTRODUCTION: Pre-eclampsia is a hypertensive gestational disorder that affects approximately 5% of all pregnancies. OBJECTIVES: As the pathophysiological processes of pre-eclampsia are still uncertain, the present case-control study explored underlying metabolic processes characterising this disease. METHODS: Maternal peripheral plasma samples were collected from pre-eclamptic (n = 32) and healthy pregnant women (n = 35) in the third trimester. After extraction, high-resolution mass spectrometry-based untargeted metabolomics was used to profile polar and apolar metabolites and the resulting data were analysed via uni- and multivariate statistical approaches. RESULTS: The study demonstrated that the metabolome undergoes substantial changes in pre-eclamptic women. Amongst the most discriminative metabolites were hydroxyhexacosanoic acid, diacylglycerols, glycerophosphoinositols, nicotinamide adenine dinucleotide metabolites, bile acids and products of amino acid metabolism. CONCLUSIONS: The putatively identified compounds provide sources for novel hypotheses to help understanding of the underlying biochemical pathology of pre-eclampsia.


Asunto(s)
Metaboloma/fisiología , Preeclampsia/metabolismo , Preeclampsia/fisiopatología , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Metabolómica/métodos , Preeclampsia/sangre , Embarazo
11.
Anal Biochem ; 567: 72-81, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30553780

RESUMEN

Glycoproteins play a central role in diverse biological processes and are linked with many serious human diseases. In this paper we present a simple, reproducible and cost-effective analytical workflow that enables the reliable quantification of clinically relevant human plasma glycoproteins using label free microflow LC-MS/MS analysis. Plasma N-glycoproteins were selectively extracted via ConA Sepharose lectin affinity chromatography then separated into two fractions using reversed-phase solid phase extraction. LC-MS/MS analysis of the tryptic digest of both fractions identified 90 proteins from which 54 clinically relevant glycoproteins were selected for protein profiling. Careful assessment of the chosen peptides and transitions in terms of reproducibility, selectivity, signal intensity and peak shape was carried out. Measurement of the analytical precision of the method revealed the majority of glycoproteins showed a coefficient of variation (CV) ≤15% (median CV 11.8%, range 3.6-33%). The method was successfully applied to compare glycoproteins in plasma and serum and to detect changes in glycoprotein profile in perturbed plasma pre-treated with ammonium sulphate. Our results show that label-free methodology can be a cost-effective affordable alternative to stable isotope standard workflow when applied for relative protein quantification, especially when targeting a large number of proteins in bioanalytical measurements.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Glicoproteínas/sangre , Espectrometría de Masas en Tándem/métodos , Sulfato de Amonio/química , Cromatografía de Afinidad , Glicoproteínas/aislamiento & purificación , Humanos , Análisis de Componente Principal , Extracción en Fase Sólida
12.
Anal Bioanal Chem ; 411(2): 427-437, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30465161

RESUMEN

Angiotensinogen (AGT) is a critical protein in the renin-angiotensin-aldosterone system and may have an important role in the pathogenesis of pre-eclampsia. The disulphide linkage between cysteines 18 and 138 has a key role in the redox switch of AGT which modulates the release of angiotensin I with consequential effects on blood pressure. In this paper, we report a quantitative targeted LC-MS/MS method for the reliable measurement of the total AGT and its reduced and oxidised forms in human plasma. AGT was selectively enriched from human plasma using two-dimensional chromatography employing concanavalin A lectin affinity and reversed phase steps and then deglycosylated using PNGase F. A differential alkylation approach was coupled with targeted LC-MS/MS method to identify the two AGT forms in the plasma chymotryptic digest. An additional AGT proteolytic marker peptide was identified and used to measure total AGT levels. The developed MS workflow enabled the reproducible detection of total AGT and its two distinct forms in human plasma with analytical precision of ≤ 15%. The LC-MS/MS assay for total AGT in plasma showed a linear response (R2 = 0.992) with a limit of quantification in the low nanomolar range. The method gave suitable validation characteristics for biomedical application to the quantification of the oxidation level and the total level of AGT in plasma samples collected from normal and pre-eclamptic patients.


Asunto(s)
Angiotensinógeno/sangre , Cromatografía Liquida , Espectrometría de Masas en Tándem , Angiotensinógeno/química , Fraccionamiento Químico , Quimotripsina , Humanos , Reproducibilidad de los Resultados
13.
J Lipid Res ; 59(9): 1763-1770, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986999

RESUMEN

Omega-6 FAs are inflammatory mediators that are increased in joints with osteoarthritis (OA), but their association with OA progression is not yet well defined. To investigate the relationship between omega-6 FAs and knee OA, we measured with LC-MS the levels of 22 omega-6 lipids (arachidonic acid, linoleic acid, and 20 oxylipins) in synovial fluid (SF) from 112 knees of 102 individuals (58 with knee OA; 44 controls). We hypothesized that oxylipin metabolites would increase in OA knee SF and with radiographically progressive disease. We validated results by comparing samples from affected and unaffected knees in 10 individuals with unilateral OA. In adjusted analysis, SF levels of three omega-6 oxylipins [prostaglandin D2, 11,12-dihydroxyeicosatrienoic acid (DHET), and 14,15-DHET] were associated with OA. Of these, 11,12-DHET and 14,15-DHET were higher in affected versus unaffected knees of people with unilateral disease (P < 0.014 and P < 0.003, respectively). Levels of these and 8,9-DHET were also associated with radiographic progression over 3.3 years in 87 individuals. Circulating levels of all three were associated with gene variants at the soluble epoxide hydrolase enzyme. Lipidomic profiling in SF identified an additional inflammatory pathway associated with knee OA and radiographic progression.


Asunto(s)
Epóxido Hidrolasas/química , Epóxido Hidrolasas/metabolismo , Osteoartritis de la Rodilla/metabolismo , Oxilipinas/química , Oxilipinas/metabolismo , Anciano , Estudios de Casos y Controles , Progresión de la Enfermedad , Epóxido Hidrolasas/genética , Femenino , Humanos , Masculino , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/enzimología , Osteoartritis de la Rodilla/genética , Polimorfismo de Nucleótido Simple , Solubilidad , Tomografía Computarizada por Rayos X
14.
Anal Chem ; 90(10): 6001-6005, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29701986

RESUMEN

A major problem limiting reproducible use of liquid extraction surface analysis (LESA) array sampling of dried surface-deposited liquid samples is the unwanted spread of extraction solvent beyond the dried sample limits, resulting in unreliable data. Here, we explore the use of the Droplet Microarray (DMA), which consists of an array of superhydrophilic spots bordered by a superhydrophobic material giving the potential to confine both the sample spot and the LESA extraction solvent in a defined area. We investigated the DMA method in comparison with a standard glass substrate using LESA analysis of a mixture of biologically relevant compounds with a wide mass range and different physicochemical properties. The optimized DMA method was subsequently applied to urine samples from a human intervention study. Relative standard deviations for the signal intensities were all reduced at least 3-fold when performing LESA-MS on the DMA surface compared with a standard glass surface. Principal component analysis revealed more tight clusters indicating improved spectral reproducibility for a human urine sample extracted from the DMA compared to glass. Lastly, in urine samples from an intervention study, more significant ions (145) were identified when using LESA-MS spectra of control and test urine extracted from the DMA. We demonstrate that DMA provides a surface-assisted LESA-MS method delivering significant improvement of the surface extraction repeatability leading to the acquisition of more robust and higher quality data. The DMA shows potential to be used for LESA-MS for controlled and reproducible surface extraction and for acquisition of high quality, qualitative data in a high-throughput manner.


Asunto(s)
Arginina/aislamiento & purificación , Difenhidramina/aislamiento & purificación , Extracción Líquido-Líquido , Rafinosa/aislamiento & purificación , Rodaminas/aislamiento & purificación , Taurina/aislamiento & purificación , Vitamina B 12/aislamiento & purificación , Arginina/química , Arginina/orina , Difenhidramina/química , Difenhidramina/orina , Voluntarios Sanos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Espectrometría de Masas , Rafinosa/química , Rafinosa/orina , Rodaminas/química , Rodaminas/orina , Propiedades de Superficie , Taurina/química , Taurina/orina , Vitamina B 12/química , Vitamina B 12/orina
15.
Anal Chem ; 90(7): 4470-4477, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29533656

RESUMEN

We have investigated the applicability of commercially available lyophilized spirulina ( Arthrospira platensis), a microorganism uniformly labeled with 13C, as a readily accessible source of multiple 13C-labeled metabolites suitable as internal standards for the quantitative determination of intracellular bacterial metabolites. Metabolites of interest were analyzed by hydrophilic-interaction liquid chromatography coupled with high-resolution mass spectrometry. Multiple internal standards obtained from uniformly (U)-13C-labeled extracts from spirulina were used to enable isotope-dilution mass spectrometry (IDMS) in the identification and quantification of intracellular metabolites. Extraction of the intracellular metabolites of Clostridium autoethanogenum using 2:1:1 chloroform/methanol/water was found to be the optimal method in comparison with freeze-thaw, homogenization, and sonication methods. The limits of quantification were ≤1 µM with excellent linearity for all of the calibration curves ( R2 ≥ 0.99) for 74 metabolites. The precision and accuracy were found to be within relative standard deviations (RSDs) of 15% for 49 of the metabolites and within RSDs of 20% for all of the metabolites. The method was applied to study the effects of feeding different levels of carbon monoxide (as a carbon source) on the central metabolism and Wood-Ljungdahl pathway of C. autoethanogenum grown in continuous culture over 35 days. Using LC-IDMS with U-13C spirulina allowed the successful quantification of 52 metabolites in the samples, including amino acids, carboxylic acids, sugar phosphates, purines, and pyrimidines. The method provided absolute quantitative data on intracellular metabolites that was suitable for computational modeling to understand and optimize the C. autoethanogenum metabolic pathways active in gas fermentation.


Asunto(s)
Clostridium/metabolismo , Técnicas de Dilución del Indicador , Spirulina/metabolismo , Isótopos de Carbono , Cromatografía Liquida , Clostridium/citología , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas
16.
FASEB J ; 31(2): 469-481, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27623929

RESUMEN

Cannabinoids modulate intestinal permeability through cannabinoid receptor 1 (CB1). The endocannabinoid-like compounds oleoylethanolamine (OEA) and palmitoylethanolamine (PEA) play an important role in digestive regulation, and we hypothesized they would also modulate intestinal permeability. Transepithelial electrical resistance (TEER) was measured in human Caco-2 cells to assess permeability after application of OEA and PEA and relevant antagonists. Cells treated with OEA and PEA were stained for cytoskeletal F-actin changes and lysed for immunoassay. OEA and PEA were measured by liquid chromatography-tandem mass spectrometry. OEA (applied apically, logEC50 -5.4) and PEA (basolaterally, logEC50 -4.9; apically logEC50 -5.3) increased Caco-2 resistance by 20-30% via transient receptor potential vanilloid (TRPV)-1 and peroxisome proliferator-activated receptor (PPAR)-α. Preventing their degradation (by inhibiting fatty acid amide hydrolase) enhanced the effects of OEA and PEA. OEA and PEA induced cytoskeletal changes and activated focal adhesion kinase and ERKs 1/2, and decreased Src kinases and aquaporins 3 and 4. In Caco-2 cells treated with IFNγ and TNFα, OEA (via TRPV1) and PEA (via PPARα) prevented or reversed the cytokine-induced increased permeability compared to vehicle (0.1% ethanol). PEA (basolateral) also reversed increased permeability when added 48 or 72 h after cytokines (P < 0.001, via PPARα). Cellular and secreted levels of OEA and PEA (P < 0.001-0.001) were increased in response to inflammatory mediators. OEA and PEA have endogenous roles and potential therapeutic applications in conditions of intestinal hyperpermeability and inflammation.-Karwad, M. A., Macpherson, T., Wang, B., Theophilidou, E., Sarmad, S., Barrett, D. A., Larvin, M., Wright, K. L., Lund, J. N., O'Sullivan, S. E. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα.


Asunto(s)
Etanolaminas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ácidos Oléicos/farmacología , PPAR alfa/metabolismo , Ácidos Palmíticos/farmacología , Canales Catiónicos TRPV/metabolismo , Amidas , Células CACO-2 , Citocinas , Citoesqueleto , Humanos , Intestinos/efectos de los fármacos , PPAR alfa/genética , Permeabilidad/efectos de los fármacos , Transducción de Señal , Canales Catiónicos TRPV/genética
17.
FASEB J ; 31(8): 3267-3277, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28404744

RESUMEN

The endocannabinoid system has previously been shown to play a role in the permeability and inflammatory response of the human gut. The goal of our study was to determine the effects of endogenous anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) on the permeability and inflammatory response of intestinal epithelium under normal, inflammatory, and hypoxic conditions. Human intestinal mucosa was modeled using Caco-2 cells. Human tissue was collected from planned colorectal resections. Accumulation of AEA and 2-AG was achieved by inhibiting their metabolizing enzymes URB597 (a fatty acid amide hydrolase inhibitor) and JZL184 (a monoacylglycerol lipase inhibitor). Inflammation and ischemia were simulated with TNF-α and IFN-γ and oxygen deprivation. Permeability changes were measured by transepithelial electrical resistance. The role of the CB1 receptor was explored using CB1-knockdown (CB1Kd) intestinal epithelial cells. Endocannabinoid levels were measured using liquid chromatography-mass spectrometry. Cytokine secretion was measured using multiplex and ELISA. URB597 and JZL184 caused a concentration-dependent increase in permeability via CB1 (P < 0.0001) and decreased cytokine production. Basolateral application of JZL184 decreased permeability via CB1 (P < 0.0001). URB597 and JZL184 increased the enhanced (worsened) permeability caused by inflammation and hypoxia (P < 0.0001 and P < 0.05). CB1Kd cells showed reduced permeability response to inflammation (P < 0.01) but not hypoxia. 2-AG levels were increased in response to inflammation and hypoxia in Caco-2 cells. In human mucosal tissue, inflammation increased the secretion of granulocyte macrophage-colony stimulating factor, IL-12, -13, and -15, which was prevented with ex vivo treatment with URB597 and JZL184, and was inhibited by a CB1 antagonist. The results of this study show that endogenous AEA and 2-AG production and CB1 activation play a key modulatory roles in normal intestinal mucosa permeability and in inflammatory and hypoxic conditions.-Karwad, M. A., Couch, D. G., Theophilidou, E., Sarmad, S., Barrett, D. A., Larvin, M., Wright, K. L., Lund, J. N., O'Sullivan, S. E. The role of CB1 in intestinal permeability and inflammation.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Intestinos/fisiología , Alcamidas Poliinsaturadas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Benzamidas/farmacología , Benzodioxoles/farmacología , Células CACO-2 , Carbamatos/farmacología , Neoplasias Colorrectales/metabolismo , Citocinas/genética , Citocinas/metabolismo , Impedancia Eléctrica , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestinos/patología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Consumo de Oxígeno , Permeabilidad , Piperidinas/farmacología , Receptor Cannabinoide CB1/genética , Técnicas de Cultivo de Tejidos
18.
Brain ; 140(6): 1768-1783, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430857

RESUMEN

See Mercado and Hetz (doi:10.1093/brain/awx107) for a scientific commentary on this article.Signalling through the PERK/eIF2α-P branch of the unfolded protein response plays a critical role in controlling protein synthesis rates in cells. This pathway is overactivated in brains of patients with Alzheimer’s disease and related disorders and has recently emerged as a promising therapeutic target for these currently untreatable conditions. Thus, in mouse models of neurodegenerative disease, prolonged overactivation of PERK/eIF2α-P signalling causes sustained attenuation of protein synthesis, leading to memory impairment and neuronal loss. Re-establishing translation rates by inhibition of eIF2α-P activity, genetically or pharmacologically, restores memory and prevents neurodegeneration and extends survival. However, the experimental compounds used preclinically are unsuitable for use in humans, due to associated toxicity or poor pharmacokinetic properties. To discover compounds that have anti-eIF2α-P activity suitable for clinical use, we performed phenotypic screens on a NINDS small molecule library of 1040 drugs. We identified two compounds, trazodone hydrochloride and dibenzoylmethane, which reversed eIF2α-P-mediated translational attenuation in vitro and in vivo. Both drugs were markedly neuroprotective in two mouse models of neurodegeneration, using clinically relevant doses over a prolonged period of time, without systemic toxicity. Thus, in prion-diseased mice, both trazodone and dibenzoylmethane treatment restored memory deficits, abrogated development of neurological signs, prevented neurodegeneration and significantly prolonged survival. In tauopathy-frontotemporal dementia mice, both drugs were neuroprotective, rescued memory deficits and reduced hippocampal atrophy. Further, trazodone reduced p-tau burden. These compounds therefore represent potential new disease-modifying treatments for dementia. Trazodone in particular, a licensed drug, should now be tested in clinical trials in patients.


Asunto(s)
Chalconas/farmacología , Demencia Frontotemporal/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Enfermedades por Prión/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Trazodona/farmacología , eIF-2 Quinasa/antagonistas & inhibidores , Animales , Conducta Animal , Chalconas/administración & dosificación , Modelos Animales de Enfermedad , Demencia Frontotemporal/complicaciones , Trastornos de la Memoria/etiología , Ratones , Fármacos Neuroprotectores/administración & dosificación , Enfermedades por Prión/complicaciones , Inhibidores de Proteínas Quinasas/administración & dosificación , Trazodona/administración & dosificación , Respuesta de Proteína Desplegada
19.
Nature ; 485(7399): 507-11, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22622579

RESUMEN

The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the α-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2α-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases, but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2α-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2α-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2α-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2α-P dephosphorylation, increased eIF2α-P levels, exacerbating neurotoxicity and significantly reducing survival in prion-diseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.


Asunto(s)
Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fosfoproteínas/metabolismo , Priones/metabolismo , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Cinamatos/farmacología , Factor 2 Eucariótico de Iniciación/análisis , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/patología , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores , Fosfoproteínas/análisis , Fosforilación , Proteínas PrPSc/análisis , Proteínas PrPSc/metabolismo , Proteínas PrPSc/toxicidad , Enfermedades por Prión/patología , Priones/biosíntesis , Priones/genética , Biosíntesis de Proteínas/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Represoras/análisis , Proteínas Represoras/química , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Transmisión Sináptica/efectos de los fármacos , Tiourea/análogos & derivados , Tiourea/farmacología , Respuesta de Proteína Desplegada/fisiología
20.
Stroke ; 48(5): 1412-1415, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28265014

RESUMEN

BACKGROUND AND PURPOSE: Repeated episodes of limb ischemia and reperfusion (remote ischemic conditioning [RIC]) may improve outcome after acute stroke. METHODS: We performed a pilot blinded placebo-controlled trial in patients with acute ischemic stroke, randomized 1:1 to receive 4 cycles of RIC within 24 hours of ictus. The primary outcome was tolerability and feasibility. Secondary outcomes included safety, clinical efficacy (day 90), putative biomarkers (pre- and post-intervention, day 4), and exploratory hemodynamic measures. RESULTS: Twenty-six patients (13 RIC and 13 sham) were recruited 15.8 hours (SD 6.2) post-onset, age 76.2 years (SD 10.5), blood pressure 159/83 mm Hg (SD 25/11), and National Institutes of Health Stroke Scale (NIHSS) score 5 (interquartile range, 3.75-9.25). RIC was well tolerated with 49 out of 52 cycles completed in full. Three patients experienced vascular events in the sham group: 2 ischemic strokes and 2 myocardial infarcts versus none in the RIC group (P=0.076, log-rank test). Compared with sham, there was a significant decrease in day 90 NIHSS score in the RIC group, median NIHSS score 1 (interquartile range, 0.5-5) versus 3 (interquartile range, 2-9.5; P=0.04); RIC augmented plasma HSP27 (heat shock protein 27; P<0.05, repeated 2-way ANOVA) and phosphorylated HSP27 (P<0.001) but not plasma S100-ß, matrix metalloproteinase-9, endocannabinoids, or arterial compliance. CONCLUSIONS: RIC after acute stroke is well tolerated and appears safe and feasible. RIC may improve neurological outcome, and protective mechanisms may be mediated through HSP27. A larger trial is warranted. CLINICAL TRIAL REGISTRATION: URL: http://www.isrctn.com. Unique identifier: ISRCTN86672015.


Asunto(s)
Isquemia Encefálica/terapia , Precondicionamiento Isquémico/métodos , Evaluación de Resultado en la Atención de Salud , Accidente Cerebrovascular/terapia , Anciano , Anciano de 80 o más Años , Isquemia Encefálica/sangre , Isquemia Encefálica/diagnóstico por imagen , Estudios de Factibilidad , Femenino , Humanos , Precondicionamiento Isquémico/efectos adversos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Método Simple Ciego , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA