Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(3): 505-519.e22, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30612738

RESUMEN

Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4-overexpressing tumors.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Nucleares/genética , Proteínas Portadoras/metabolismo , Cromatina/metabolismo , ADN , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Femenino , Inestabilidad Genómica , Mutación de Línea Germinal , Recombinación Homóloga , Humanos , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Cultivo Primario de Células , Reparación del ADN por Recombinación
2.
Nucleic Acids Res ; 52(5): 2648-2671, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38180812

RESUMEN

Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.


Asunto(s)
Metiltransferasas , Neuroblastoma , ARN Largo no Codificante , Humanos , Adenina/análogos & derivados , Metiltransferasas/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , Telómero/genética , Homeostasis del Telómero
3.
Br J Cancer ; 128(8): 1559-1571, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807339

RESUMEN

BACKGROUND: Genomic alterations of the anaplastic lymphoma kinase gene (ALK) occur recurrently in neuroblastoma, a pediatric malignancy of the sympathetic nervous system. However, information on their development over time has remained sparse. METHODS: ALK alterations were assessed in neuroblastomas at diagnosis and/or relapse from a total of 943 patients, covering all stages of disease. Longitudinal information on diagnostic and relapsed samples from individual patients was available in 101 and 102 cases for mutation and amplification status, respectively. RESULTS: At diagnosis, ALK point mutations occurred in 10.5% of all cases, with highest frequencies in stage 4 patients <18 months. At relapse, ALK alteration frequency increased by 70%, both in high-risk and non-high-risk cases. The increase was most likely due to de novo mutations, frequently leading to R1275Q substitutions, which are sensitive to pharmacological ALK inhibition. By contrast, the frequency of ALK amplifications did not change over the course of the disease. ALK amplifications, but not mutations, were associated with poor patient outcome. CONCLUSIONS: The considerably increased frequency of ALK mutations at relapse and their high prevalence in young stage 4 patients suggest surveying the genomic ALK status regularly in these patient cohorts, and to evaluate ALK-targeted treatment also in intermediate-risk patients.


Asunto(s)
Neuroblastoma , Proteínas Tirosina Quinasas Receptoras , Niño , Humanos , Quinasa de Linfoma Anaplásico/genética , Proteínas Tirosina Quinasas Receptoras/genética , Recurrencia Local de Neoplasia/genética , Neuroblastoma/genética , Neuroblastoma/patología , Genómica
4.
Blood ; 137(17): 2347-2359, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33152759

RESUMEN

T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. The dismal outcomes (15%-30%) after T-LBL relapse warrant establishing risk-based treatment. To our knowledge, this study presents the first comprehensive, systematic, integrated, genome-wide analysis including relapsed cases that identifies molecular markers of prognostic relevance for T-LBL. NOTCH1 was identified as the putative driver for T-LBL. An activated NOTCH/PI3K-AKT signaling axis and alterations in cell cycle regulators constitute the core oncogenic program for T-LBL. Mutated KMT2D was identified as a prognostic marker. The cumulative incidence of relapse was 47% ± 17% in patients with KMT2D mutations, compared with 14% ± 3% in wild-type KMT2D. Structural analysis of the mutated domains of KMT2D revealed a plausible impact on structure and functional consequences. These findings provide new insights into the pathogenesis of T-LBL, including high translational potential. The ongoing LBL 2018 trial (www.clinicaltrials.gov #NCT04043494) allows for prospective validation and subsequent fine tuning of the stratification criteria for T-LBL risk groups to improve survival of pediatric patients.


Asunto(s)
Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/genética , Genómica/métodos , Proteínas de Neoplasias/genética , Fosfatidilinositol 3-Quinasas/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proteínas Proto-Oncogénicas c-akt/genética , Receptor Notch1/genética , Adolescente , Niño , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Pronóstico , Tasa de Supervivencia
5.
Brief Bioinform ; 17(1): 51-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25998133

RESUMEN

Structural variation (SV) plays an important role in genetic diversity among the population in general and specifically in diseases such as cancer. Modern next-generation sequencing (NGS) technologies provide paired-end sequencing data at high depth with increasing read lengths. This development enabled the analysis of split-reads to detect SV breakpoints with single-nucleotide resolution. But ambiguous mappings and breakpoint sequences with further co-occurring mutations hamper split-read alignments against a reference sequence. The trade-off between high sensitivity and low false-positive rate is problematic and often requires a lot of fine-tuning of the analysis method based on knowledge about its algorithm and the characteristics of the data set. We present SoftSV, a method for exact breakpoint detection for small and large deletions, inversions, tandem duplications and inter-chromosomal translocations, which relies solely on the mutual alignment of soft-clipped reads within the neighborhood of discordantly mapped paired-end reads. Unlike other SV detection algorithms, our approach does not require thresholds regarding sequencing coverage or mapping quality. We evaluate SoftSV together with eight approaches (Breakdancer, Clever, CREST, Delly, GASVPro, Pindel, Socrates and SoftSearch) on simulated and real data sets. Our results show that sensitive and reliable SV detection is subject to many different factors like read length, sequence coverage and SV type. While most programs have their individual drawbacks, our greedy approach turns out to be the most robust and sensitive on many experimental setups. Sensitivities above 85% and positive predictive values between 80 and 100% could be achieved consistently for all SV types on simulated data sets starting at relatively short 75 bp reads and low 10-15× sequence coverage.


Asunto(s)
Algoritmos , Puntos de Rotura del Cromosoma , Variación Genética , Alineación de Secuencia/estadística & datos numéricos , Biología Computacional , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Mutación , Análisis de Secuencia de ADN , Eliminación de Secuencia , Programas Informáticos
6.
Br J Cancer ; 117(5): 725-733, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28728164

RESUMEN

BACKGROUND: Chromosomal instability (CIN) has repeatedly been identified as a prognostic marker. Here we evaluated the percentage of aberrant genome per cell (PAG) as a measure of CIN in single disseminated tumour cells (DTC) isolated from patients with operable oesophageal adenocarcinoma (EAC), to assess the impact of CINhigh DTCs on prognosis. METHODS: We isolated CK18positive DTCs from bone marrow (BM) or lymph node (LN) preparations of operable EAC patients. After whole-genome amplification, single DTCs were analysed for chromosomal gains and losses using metaphase-based comparative genomic hybridisation (mCGH). We calculated the PAG for each DTC and determined the critical threshold value that identifies high-risk patients by STEPP (Subpopulation Treatment Effect Pattern Plot) analysis in two independent EAC patient cohorts (cohort #1, n=44; cohort #2; n=29). RESULTS: The most common chromosomal alterations observed among the DTCs were typical for EAC, but the DTCs showed a varying PAG between individual patients. Generally, LNDTCs displayed a significantly higher PAG than BMDTCs. STEPP analysis revealed an increasing PAG of DTCs to be correlated with an increased risk for short survival in two independent EAC cohorts as well as in the corresponding pooled analysis. In all three data sets (cohort #1, cohort #2 and pooled cohort), PAGhigh DTCs conferred an independent risk for a significantly decreased survival. CONCLUSIONS: The analysis of PAG/CIN in solitary marker-positive DTCs identifies operable EAC patients with poor prognosis, indicating a more aggressive minimal residual disease.


Asunto(s)
Adenocarcinoma/genética , Médula Ósea/patología , Inestabilidad Cromosómica , Neoplasias Esofágicas/genética , Ganglios Linfáticos/patología , Células Neoplásicas Circulantes , Adenocarcinoma/secundario , Adenocarcinoma/cirugía , Anciano , Hibridación Genómica Comparativa , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/cirugía , Femenino , Humanos , Queratina-18/análisis , Metástasis Linfática , Masculino , Persona de Mediana Edad , Células Neoplásicas Circulantes/química , Pronóstico , Tasa de Supervivencia
7.
Nucleic Acids Res ; 42(14): 9131-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034695

RESUMEN

The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.


Asunto(s)
Cromosomas Humanos/química , Amplificación de Genes , Genes Relacionados con las Neoplasias , Genes myc , Neoplasias/genética , Línea Celular Tumoral , Evolución Molecular , Expresión Génica , Fusión Génica , Genoma Humano , Células HL-60 , Humanos
8.
Hum Mutat ; 35(10): 1260-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25066732

RESUMEN

Unbiased amplification of the whole-genome amplification (WGA) of single cells is crucial to study cancer evolution and genetic heterogeneity, but is challenging due to the high complexity of the human genome. Here, we present a new workflow combining an efficient adapter-linker PCR-based WGA method with second-generation sequencing. This approach allows comparison of single cells at base pair resolution. Amplification recovered up to 74% of the human genome. Copy-number variants and loss of heterozygosity detected in single cell genomes showed concordance of up to 99% to pooled genomic DNA. Allele frequencies of mutations could be determined accurately due to an allele dropout rate of only 2%, clearly demonstrating the low bias of our PCR-based WGA approach. Sequencing with paired-end reads allowed genome-wide analysis of structural variants. By direct comparison to other WGA methods, we further endorse its suitability to analyze genetic heterogeneity.


Asunto(s)
Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Análisis de la Célula Individual/métodos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Frecuencia de los Genes , Heterogeneidad Genética , Humanos , Pérdida de Heterocigocidad , Reacción en Cadena de la Polimerasa/métodos , Reproducibilidad de los Resultados , Flujo de Trabajo
9.
Bioinformatics ; 29(13): 1679-81, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23620362

RESUMEN

UNLABELLED: RSVSim is a tool for the simulation of deletions, insertions, inversions, tandem duplications and translocations of various sizes in any genome available as FASTA-file or data package in R. The structural variations can be generated randomly, based on user-supplied genomic coordinates or associated to various kinds of repeats. The package further comprises functions to estimate the distribution of structural variation sizes from real datasets. AVAILABILITY: RSVSim is implemented in R and available at http://www.bioconductor.org. A vignette with detailed descriptions of the functions and examples is included.


Asunto(s)
Variación Estructural del Genoma , Programas Informáticos , Puntos de Rotura del Cromosoma , Simulación por Computador , Genoma , Genómica/métodos
10.
Genes Chromosomes Cancer ; 52(6): 564-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23508829

RESUMEN

Near haploidy (23-29 chromosomes) is a numerical cytogenetic aberration in childhood acute lymphoblastic leukemia (ALL) associated with particularly poor outcome. In contrast, high hyperdiploidy (51-67 chromosomes) has a favorable prognosis. Correct classification and appropriate risk stratification of near haploidy is frequently hampered by the presence of apparently high hyperdiploid clones that arise by endoreduplication of the original near haploid clone. We evaluated next-generation-sequencing (NGS) to distinguish between "high hyperdiploid" leukemic clones of near haploid and true high hyperdiploid origin. Five high hyperdiploid ALL cases and the "high hyperdiploid" cell line MHH-CALL-2, derived from a near haploid clone, were tested for uniparental isodisomy. NGS showed that all disomic chromosomes of MHH-CALL-2, but none of the patients, were of uniparental origin, thus reliably discriminating these subtypes. Whole-exome- and whole-genome-sequencing of MHH-CALL-2 revealed homozygous non-synonymous coding mutations predicted to be deleterious for the protein function of 63 genes, among them known cancer-associated genes, such as FANCA, NF1, TCF7L2, CARD11, EP400, histone demethylases, and transferases (KDM6B, KDM1A, PRDM11). Only eight of these were also, but heterozygously, mutated in the high hyperdiploid patients. Structural variations in MHH-CALL-2 include a homozygous deletion (MTAP/CDKN2A/CDKN2B/ANRIL), a homozygous inversion (NCKAP5), and an unbalanced translocation (FAM189A1). Together, the sequence variations provide MHH-CALL-2 with capabilities typically acquired during cancer development, e.g., loss of cell cycle control, enhanced proliferation, lack of DNA repair, cell death evasion, and disturbance of epigenetic gene regulation. Poorer prognosis of near haploid ALL most likely results from full penetrance of a large array of detrimental homozygous mutations.


Asunto(s)
Biomarcadores de Tumor/genética , Exoma/genética , Perfilación de la Expresión Génica , Haploidia , Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Preescolar , Aberraciones Cromosómicas , Femenino , Humanos , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Leucemia-Linfoma Linfoblástico de Células Precursoras/clasificación , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Medición de Riesgo , Células Tumorales Cultivadas
11.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895225

RESUMEN

Selenocysteine (Sec) metabolism is crucial for cellular function and ferroptosis prevention and has traditionally been thought to begin with the uptake of the Sec carrier selenoprotein P (SELENOP). Following uptake, Sec released from SELENOP undergoes metabolisation via selenocysteine lyase (SCLY), producing selenide, a substrate used by selenophosphate synthetase 2 (SEPHS2), which provides the essential selenium donor - selenophosphate - for the biosynthesis of the selenocysteine tRNA. Here, we report the discovery of an alternative pathway mediating Sec metabolisation that is independent of SCLY and mediated by peroxiredoxin 6 (PRDX6). Mechanistically, we demonstrate that PRDX6 can readily react with selenide and interact with SEPHS2, potentially acting as a selenium delivery system. Moreover, we demonstrate the presence and functional significance of this alternative route in cancer cells where we reveal a notable association between elevated expression of PRDX6 with a highly aggressive neuroblastoma subtype. Altogether, our study sheds light on a previously unrecognized aspect of Sec metabolism and its implications in ferroptosis, offering new avenues for therapeutic exploitation.

12.
EMBO Mol Med ; 15(8): e18014, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435859

RESUMEN

Ferroptosis has emerged as an attractive strategy in cancer therapy. Understanding the operational networks regulating ferroptosis may unravel vulnerabilities that could be harnessed for therapeutic benefit. Using CRISPR-activation screens in ferroptosis hypersensitive cells, we identify the selenoprotein P (SELENOP) receptor, LRP8, as a key determinant protecting MYCN-amplified neuroblastoma cells from ferroptosis. Genetic deletion of LRP8 leads to ferroptosis as a result of an insufficient supply of selenocysteine, which is required for the translation of the antiferroptotic selenoprotein GPX4. This dependency is caused by low expression of alternative selenium uptake pathways such as system Xc- . The identification of LRP8 as a specific vulnerability of MYCN-amplified neuroblastoma cells was confirmed in constitutive and inducible LRP8 knockout orthotopic xenografts. These findings disclose a yet-unaccounted mechanism of selective ferroptosis induction that might be explored as a therapeutic strategy for high-risk neuroblastoma and potentially other MYCN-amplified entities.


Asunto(s)
Ferroptosis , Neuroblastoma , Humanos , Línea Celular Tumoral , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/tratamiento farmacológico , Selenocisteína/uso terapéutico , Animales
13.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606995

RESUMEN

The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer (SQLC) has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only 11% of patients with 8p11 amplification (detected by FISH) responded to FGFR kinase inhibitor treatment. To understand the mechanism of FGFR1 dependency, we performed deep genomic characterization of 52 SQLCs with 8p11-p12 amplification, including 10 tumors obtained from patients who had been treated with FGFR inhibitors. We discovered somatically altered variants of FGFR1 with deletion of exons 1-8 that resulted from intragenic tail-to-tail rearrangements. These ectodomain-deficient FGFR1 variants (ΔEC-FGFR1) were expressed in the affected tumors and were tumorigenic in both in vitro and in vivo models of lung cancer. Mechanistically, breakage-fusion-bridges were the source of 8p11-p12 amplification, resulting from frequent head-to-head and tail-to-tail rearrangements. Generally, tail-to-tail rearrangements within or in close proximity upstream of FGFR1 were associated with FGFR1 dependency. Thus, the genomic events shaping the architecture of the 8p11-p12 amplicon provide a mechanistic explanation for the emergence of FGFR1-driven SQLC. Specifically, we believe that FGFR1 ectodomain-deficient and FGFR1-centered amplifications caused by tail-to-tail rearrangements are a novel somatic genomic event that might be predictive of therapeutically relevant FGFR1 dependency.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Amplificación de Genes , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Epiteliales/metabolismo
14.
Bioinformatics ; 27(8): 1162-3, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21349869

RESUMEN

UNLABELLED: The R453Plus1Toolbox is an R/Bioconductor package for the analysis of 454 Sequencing data. Projects generated with Roche's data analysis software can be imported into R allowing advanced and customized analyses within the R/Bioconductor environment for sequencing data. Several methods were implemented extending the current functionality of Roche's software. These extensions include methods for quality assurance and annotation of detected variants. Further, a pipeline for the detection of structural variants, e.g. balanced chromosomal translocations, is provided. AVAILABILITY: The R453Plus1Toolbox is implemented in R and available at http://www.bioconductor.org/. A vignette outlining typical workflows is included in the package. CONTACT: h.klein@uni-muenster.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Cromosómico , Variación Genética , Reacción en Cadena de la Polimerasa
16.
Cell Oncol (Dordr) ; 45(5): 991-1003, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35953764

RESUMEN

BACKGROUND: The majority of high-risk neuroblastomas harbor telomerase activity, and telomerase-interacting compounds, such as 6-thio-2'-deoxyguanosine (6-thio-dG), have been found to impair the growth of telomerase-positive neuroblastoma cell lines. It has remained unclear, however, how such drugs can be combined with other compounds used in current treatment concepts for neuroblastoma patients. METHODS: Growth-inhibitory effects of varying concentrations of 6-thio-dG in combination with etoposide, doxorubicin or ceritinib were determined in eight telomerase-positive neuroblastoma cell lines with distinct genetic backgrounds. Tumor growth inhibition of subcutaneous xenografts from three different cell lines was assessed upon treatment with 6-thio-dG, the competitive telomerase inhibitor imetelstat, etoposide, or combinations of these compounds. RESULTS: Robust synergistic anti-tumor effects were observed for combinations of 6-thio-dG and etoposide or doxorubicin, but not for 6-thio-dG and ceritinib, in telomerase-positive neuroblastoma cell lines in vitro. Treatment of mouse xenografts with combinations of 6-thio-dG and etoposide significantly attenuated tumor growth and improved mouse survival over etoposide alone in two of three cell line models. Treatment of xenograft tumors by imetelstat monotherapy decreased telomerase activity by roughly 50% and significantly improved survival over control in all three models, whereas treatment with imetelstat plus etoposide led to enhanced survival over etoposide monotherapy in one model. Mechanistically, the synergistic effect was found to be due to both increased apoptosis and cell cycle arrest. CONCLUSION: Our study indicates that telomerase is an actionable target in telomerase-positive neuroblastoma, and demonstrates that combination therapies including telomerase-interacting compounds may improve the efficacy of established cytotoxic drugs. Targeting telomerase may thus represent a therapeutic option in high-risk neuroblastoma patients.


Asunto(s)
Neuroblastoma , Telomerasa , Humanos , Ratones , Animales , Telomerasa/genética , Etopósido/farmacología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Neuroblastoma/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
17.
Cell Biosci ; 12(1): 160, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153564

RESUMEN

BACKGROUND: Telomere maintenance mechanisms (TMM) are a hallmark of high-risk neuroblastoma, and are conferred by activation of telomerase or alternative lengthening of telomeres (ALT). However, detection of TMM is not yet part of the clinical routine, and consensus on TMM detection, especially on ALT assessment, remains to be achieved. METHODS: Whole genome sequencing (WGS) data of 68 primary neuroblastoma samples were analyzed. Telomere length was calculated from WGS data or by telomere restriction fragment analysis (n = 39). ALT was assessed by C-circle assay (CCA, n = 67) and detection of ALT-associated PML nuclear bodies (APB) by combined fluorescence in situ hybridization and immunofluorescence staining (n = 68). RNA sequencing was performed (n = 64) to determine expression of TERT and telomeric long non-coding RNA (TERRA). Telomerase activity was examined by telomerase repeat amplification protocol (TRAP, n = 15). RESULTS: Tumors were considered as telomerase-positive if they harbored a TERT rearrangement, MYCN amplification or high TERT expression (45.6%, 31/68), and ALT-positive if they were positive for APB and CCA (19.1%, 13/68). If all these markers were absent, tumors were considered TMM-negative (25.0%, 17/68). According to these criteria, the majority of samples were classified unambiguously (89.7%, 61/68). Assessment of additional ALT-associated parameters clarified the TMM status of the remaining seven cases with high likelihood: ALT-positive tumors had higher TERRA expression, longer telomeres, more telomere insertions, a characteristic pattern of telomere variant repeats, and were associated with ATRX mutations. CONCLUSIONS: We here propose a workflow to reliably detect TMM in neuroblastoma. We show that unambiguous classification is feasible following a stepwise approach that determines both, activation of telomerase and ALT. The workflow proposed in this study can be used in clinical routine and provides a framework to systematically and reliably determine telomere maintenance mechanisms for risk stratification and treatment allocation of neuroblastoma patients.

18.
Sci Adv ; 8(28): eabn1382, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857500

RESUMEN

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.

19.
Cancers (Basel) ; 13(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34503173

RESUMEN

BACKGROUND: To identify variables predicting outcome in neuroblastoma patients assigned to the high-risk group solely by the presence of MYCN oncogene amplification (MNA). METHODS: Clinical characteristics, genomic information, and outcome of 190 patients solely assigned to high-risk neuroblastoma by MNA were analyzed and compared to 205 patients with stage 4 neuroblastoma aged ≥18 months with MNA (control group). RESULTS: Event-free survival (EFS) and overall survival (OS) at 10 years were 47% (95%-CI 39-54%) and 56% (95%-CI 49-63%), respectively, which was significantly better than EFS and OS of the control group (EFS 25%, 95%-CI 18-31%, p < 0.001; OS 32% 95%-CI 25-39%, p < 0.001). The presence of RAS-/p53-pathway gene alterations was associated with impaired 10-year EFS and OS (19% vs. 55%, and 19% vs. 67%, respectively; both p < 0.001). In time-dependent multivariable analyses, alterations of RAS-/p53-pathway genes and the extent of the best primary tumor resection were the only independent prognostic variables for OS (p < 0.001 and p = 0.011, respectively). CONCLUSIONS: Neuroblastoma patients attributed to high risk solely by MYCN amplification have generally a more favorable outcome. Mutations of genes of the RAS and/or p53 pathways and incomplete resection are the main risk factors predicting poor outcome.

20.
Eur J Hum Genet ; 29(8): 1301-1311, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33840814

RESUMEN

In childhood cancer, the frequency of cancer-associated germline variants and their inheritance patterns are not thoroughly investigated. Moreover, the identification of children carrying a genetic predisposition by clinical means remains challenging. In this single-center study, we performed trio whole-exome sequencing and comprehensive clinical evaluation of a prospectively enrolled cohort of 160 children with cancer and their parents. We identified in 11/160 patients a pathogenic germline variant predisposing to cancer and a further eleven patients carried a prioritized VUS with a strong association to the cancerogenesis of the patient. Through clinical screening, 51 patients (31.3%) were identified as suspicious for an underlying cancer predisposition syndrome (CPS), but only in ten of those patients a pathogenic variant could be identified. In contrast, one patient with a classical CPS and ten patients with prioritized VUS were classified as unremarkable in the clinical work-up. Taken together, a monogenetic causative variant was detected in 13.8% of our patients using WES. Nevertheless, the still unclarified clinical suspicious cases emphasize the need to consider other genetic mechanisms including new target genes, structural variants, or polygenic interactions not previously associated with cancer predisposition.


Asunto(s)
Mutación de Línea Germinal , Neoplasias/genética , Fenotipo , Adolescente , Niño , Femenino , Pruebas Genéticas/estadística & datos numéricos , Humanos , Masculino , Neoplasias/diagnóstico , Secuenciación del Exoma/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA