Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 511(7510): 428-34, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25043047

RESUMEN

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.


Asunto(s)
Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos/genética , Variación Estructural del Genoma/genética , Meduloblastoma/genética , Oncogenes/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Niño , Cromosomas Humanos Par 9/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Meduloblastoma/clasificación , Meduloblastoma/patología , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
2.
Nature ; 510(7506): 537-41, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24847876

RESUMEN

Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.


Asunto(s)
Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Meduloblastoma/genética , Análisis de Secuencia de ADN/métodos , Animales , Sitios de Unión , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Femenino , Genoma/genética , Histonas/metabolismo , Humanos , Meduloblastoma/patología , Ratones , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Nature ; 488(7409): 100-5, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22832583

RESUMEN

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Asunto(s)
Neoplasias Cerebelosas/genética , Genoma Humano/genética , Meduloblastoma/genética , Envejecimiento/genética , Secuencia de Aminoácidos , Transformación Celular Neoplásica , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/diagnóstico , Neoplasias Cerebelosas/patología , Niño , Cromatina/metabolismo , Cromosomas Humanos/genética , ARN Helicasas DEAD-box/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Genómica , Proteínas Hedgehog/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histona Demetilasas/genética , Humanos , Meduloblastoma/clasificación , Meduloblastoma/diagnóstico , Meduloblastoma/patología , Metilación , Mutación/genética , Tasa de Mutación , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Fusión Oncogénica/genética , Receptores Patched , Receptor Patched-1 , Fosfoproteínas Fosfatasas/genética , Poliploidía , Receptores de Superficie Celular/genética , Análisis de Secuencia de ARN , Transducción de Señal , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Proteínas Wnt/metabolismo , beta Catenina/genética
4.
Nat Methods ; 10(2): 155-61, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314173

RESUMEN

Transposons and γ-retroviruses have been efficiently used as insertional mutagens in different tissues to identify molecular culprits of cancer. However, these systems are characterized by recurring integrations that accumulate in tumor cells and that hamper the identification of early cancer-driving events among bystander and progression-related events. We developed an insertional mutagenesis platform based on lentiviral vectors (LVVs) by which we could efficiently induce hepatocellular carcinoma (HCC) in three different mouse models. By virtue of the LVV's replication-deficient nature and broad genome-wide integration pattern, LVV-based insertional mutagenesis allowed identification of four previously unknown liver cancer-associated genes from a limited number of integrations. We validated the oncogenic potential of all the identified genes in vivo, with different levels of penetrance. The newly identified genes are likely to play a role in human cancer because they are upregulated, amplified and/or deleted in human HCCs and can predict clinical outcomes of patients.


Asunto(s)
Carcinoma Hepatocelular/genética , Lentivirus/genética , Neoplasias Hepáticas/genética , Mutagénesis Insercional , Oncogenes , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Vectores Genéticos , Humanos , Ratones , Fosfohidrolasa PTEN/deficiencia , Prealbúmina/genética , Receptor de Interferón alfa y beta/deficiencia
5.
Mol Ther ; 22(3): 567-574, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23941813

RESUMEN

Integration-deficient lentiviral vectors (IDLVs) have been shown to transduce a wide spectrum of target cells and organs in vitro and in vivo and to maintain long-term transgene expression in nondividing cells. However, epigenetic silencing of episomal vector genomes reduces IDLV transgene expression levels and renders these safe vectors less efficient. In this article, we describe for the first time a complete correction of factor IX (FIX) deficiency in hemophilia B mice by IDLVs carrying a novel, highly potent human FIX cDNA. A 50-fold increase in human FIX cDNA potency was achieved by combining two mechanistically independent yet synergistic strategies: (i) optimization of the human FIX cDNA codon usage to increase human FIX protein production per vector genome and (ii) generation of a highly catalytic mutant human FIX protein in which the arginine residue at position 338 was substituted with leucine. The enhanced human FIX activity was not associated with liver damage or with the formation of human FIX-directed inhibitory antibodies and rendered IDLV-treated FIX-knockout mice resistant to a challenging tail-clipping assay. A novel S1 nuclease-based B1-quantitative polymerase chain reaction assay showed low levels of IDLV integration in mouse liver. Overall, this study demonstrates that IDLVs carrying an improved human FIX cDNA safely and efficiently cure hemophilia B in a mouse model.


Asunto(s)
Factor IX/genética , Vectores Genéticos/administración & dosificación , Hemofilia B/terapia , Lentivirus/genética , Animales , Arginina/metabolismo , Codón , Modelos Animales de Enfermedad , Factor IX/metabolismo , Terapia Genética , Vectores Genéticos/uso terapéutico , Hemofilia B/patología , Células Hep G2 , Humanos , Leucina/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
6.
Mol Ther ; 22(4): 774-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24441399

RESUMEN

Self-inactivating (SIN) lentiviral vectors (LV) have an excellent therapeutic potential as demonstrated in preclinical studies and clinical trials. However, weaker mechanisms of insertional mutagenesis could still pose a significant risk in clinical applications. Taking advantage of novel in vivo genotoxicity assays, we tested a battery of LV constructs, including some with clinically relevant designs, and found that oncogene activation by promoter insertion is the most powerful mechanism of early vector-induced oncogenesis. SIN LVs disabled in their capacity to activate oncogenes by promoter insertion were less genotoxic and induced tumors by enhancer-mediated activation of oncogenes with efficiency that was proportional to the strength of the promoter used. On the other hand, when enhancer activity was reduced by using moderate promoters, oncogenesis by inactivation of tumor suppressor gene was revealed. This mechanism becomes predominant when the enhancer activity of the internal promoter is shielded by the presence of a synthetic chromatin insulator cassette. Our data provide both mechanistic insights and quantitative readouts of vector-mediated genotoxicity, allowing a relative ranking of different vectors according to these features, and inform current and future choices of vector design with increasing biosafety.


Asunto(s)
Carcinogénesis/genética , Terapia Genética , Vectores Genéticos/efectos adversos , Lentivirus/genética , Vectores Genéticos/uso terapéutico , Humanos , Lentivirus/patogenicidad , Mutagénesis Insercional/genética , Regiones Promotoras Genéticas
7.
J Antimicrob Chemother ; 69(10): 2809-18, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24962031

RESUMEN

OBJECTIVES: The rapid early-phase decay of plasma HIV-1 RNA during integrase inhibitor-based therapy is not fully understood. The accumulation of biologically active episomal HIV-1 cDNAs, following aborted integration, could contribute to antiviral potency in vivo. METHODS: This prospective, controlled clinical observation study explored raltegravir's impact on the dynamics of HIV-1 RNA in plasma, and concentrations of total HIV-1 cDNA, episomal 2-long terminal repeat (LTR) circles and HIV-1 integrants in peripheral blood mononuclear cells (PBMC). Individuals starting therapy with two nucleoside reverse transcriptase inhibitors plus either raltegravir (raltegravir group; n = 10 patients) or boosted protease inhibitor/non-nucleoside reverse transcriptase inhibitor (control group; n = 10 patients) were followed for 48 weeks. RESULTS: Suppression of HIV-1 RNA (<50 copies/mL) was reached earlier (5/10 versus 0/10 at week 4; 8/10 versus 4/10 at week 12) on raltegravir. Significant total HIV-1 cDNA reductions in PBMC were reached by day 99 and persisted until day 330, with median factors of decrease of 7.2 and 8.9, respectively. Broad inter-individual variations, yet no treatment-associated differences, were noted for HIV-1 cDNA concentrations. Despite reductions in HIV-1 RNA (∼3 log) and total HIV-1 cDNA (∼1 log), concentrations of integrants and 2-LTR circles remained largely unchanged. CONCLUSIONS: These results extend the previously reported early benefit of raltegravir on the decline of plasma viraemia to treatment-naive patients. The modest treatment-associated, yet group-independent, decline in total HIV-1 cDNA load and the lack of significant changes in integrated and episomal HIV-1 cDNA suggest that most integrated DNA is archival and targeting of HIV reservoirs other than PBMC may underlie beneficial effects of raltegravir.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/efectos de los fármacos , Pirrolidinonas/farmacología , Pirrolidinonas/uso terapéutico , Adulto , Anciano , Femenino , Duplicado del Terminal Largo de VIH , VIH-1/genética , Humanos , Leucocitos Mononucleares/virología , Masculino , Persona de Mediana Edad , Proyectos Piloto , Provirus , ARN Viral , Raltegravir Potásico , Carga Viral , Integración Viral , Adulto Joven
8.
Mol Ther ; 21(1): 175-84, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22371846

RESUMEN

Gene therapy with ex vivo-transduced hematopoietic stem/progenitor cells may represent a valid therapeutic option for monogenic immunohematological disorders such as Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency associated with thrombocytopenia. We evaluated the preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vectors (LV) encoding WAS protein (WASp). We first set up and validated a transduction protocol for CD34(+) cells derived from bone marrow (BM) or mobilized peripheral blood (MPB) using a clinical grade, highly purified LV. Robust transduction of progenitor cells was obtained in normal donors and WAS patients' cells, without evidence of toxicity. To study biodistribution of human cells and exclude vector release in vivo, LV-transduced CD34(+) cells were transplanted in immunodeficient mice, showing a normal engraftment and differentiation ability towards transduced lymphoid and myeloid cells in hematopoietic tissues. Vector mobilization to host cells and transmission to germline cells of the LV were excluded by different molecular assays. Analysis of vector integrations showed polyclonal integration patterns in vitro and in human engrafted cells in vivo. In summary, this work establishes the preclinical safety and efficacy of human CD34(+) cells gene therapy for the treatment of WAS.


Asunto(s)
Antígenos CD34/inmunología , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Vectores Genéticos , Lentivirus/genética , Transducción Genética , Síndrome de Wiskott-Aldrich/terapia , Animales , Células de la Médula Ósea/inmunología , Ratones , Ratones Noqueados
9.
Nat Med ; 12(3): 348-53, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16491086

RESUMEN

Retroviral and lentiviral vector integration into host-cell chromosomes carries with it a finite chance of causing insertional mutagenesis. This risk has been highlighted by the induction of malignancy in mouse models, and development of lymphoproliferative disease in three individuals with severe combined immunodeficiency-X1 (refs. 2,3). Therefore, a key challenge for clinical therapies based on retroviral vectors is to achieve stable transgene expression while minimizing insertional mutagenesis. Recent in vitro studies have shown that integration-deficient lentiviral vectors can mediate stable transduction. With similar vectors, we now show efficient and sustained transgene expression in vivo in rodent ocular and brain tissues. We also show substantial rescue of clinically relevant rodent models of retinal degeneration. Therefore, the high efficiency of gene transfer and expression mediated by lentiviruses can be harnessed in vivo without a requirement for vector integration. For therapeutic application to postmitotic tissues, this system substantially reduces the risk of insertional mutagenesis.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos/genética , Lentivirus/genética , Animales , Encéfalo/citología , Proteínas Portadoras , Electrorretinografía , Proteínas del Ojo/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Epitelio Pigmentado Ocular/citología , Ratas , Retina/citología , Células Tumorales Cultivadas , Integración Viral/genética , cis-trans-Isomerasas
10.
Hepatology ; 53(5): 1696-707, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21520180

RESUMEN

UNLABELLED: Lentiviral vectors are attractive tools for liver-directed gene therapy because of their capacity for stable gene expression and the lack of preexisting immunity in most human subjects. However, the use of integrating vectors may raise some concerns about the potential risk of insertional mutagenesis. Here we investigated liver gene transfer by integrase-defective lentiviral vectors (IDLVs) containing an inactivating mutation in the integrase (D64V). Hepatocyte-targeted expression using IDLVs resulted in the sustained and robust induction of immune tolerance to both intracellular and secreted proteins, despite the reduced transgene expression levels in comparison with their integrase-competent vector counterparts. IDLV-mediated and hepatocyte-targeted coagulation factor IX (FIX) expression prevented the induction of neutralizing antibodies to FIX even after antigen rechallenge in hemophilia B mice and accounted for relatively prolonged therapeutic FIX expression levels. Upon the delivery of intracellular model antigens, hepatocyte-targeted IDLVs induced transgene-specific regulatory T cells that contributed to the observed immune tolerance. Deep sequencing of IDLV-transduced livers showed only rare genomic integrations that had no preference for gene coding regions and occurred mostly by a mechanism inconsistent with residual integrase activity. CONCLUSION: IDLVs provide an attractive platform for the tolerogenic expression of intracellular or secreted proteins in the liver with a substantially reduced risk of insertional mutagenesis.


Asunto(s)
Epítopos , Vectores Genéticos/genética , Hepatocitos , Tolerancia Inmunológica/genética , Integrasas/genética , Lentivirus/enzimología , Animales , Células Cultivadas , Daño del ADN , Femenino , Hepatocitos/virología , Humanos , Ratones , Ratones Endogámicos BALB C , Riesgo
11.
Mol Ther ; 19(4): 703-10, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21364536

RESUMEN

Lentiviral vectors with self-inactivating (SIN) long terminal repeats (LTRs) are promising for safe and sustained transgene expression in dividing as well as quiescent cells. As genome organization and transcription substantially differs between actively dividing and postmitotic cells in vivo, we hypothesized that genomic vector integration preferences might be distinct between these biological states. We performed integration site (IS) analyses on mouse dividing cells (fibroblasts and hematopoietic progenitor cells (HPCs)) transduced ex vivo and postmitotic cells (eye and brain) transduced in vivo. As expected, integration in dividing cells occurred preferably into gene coding regions. In contrast, postmitotic cells showed a close to random frequency of integration into genes and gene spare long interspersed nuclear elements (LINE). Our studies on the potential mechanisms responsible for the detected differences of lentiviral integration suggest that the lowered expression level of Psip1 reduce the integration frequency in vivo into gene coding regions in postmitotic cells. The motif TGGAA might represent one of the factors for preferred lentiviral integration into mouse and rat Satellite DNA. These observations are highly relevant for the correct assessment of preclinical biosafety studies, indicating that lentiviral vectors are well suited for safe and effective clinical gene transfer into postmitotic tissues.


Asunto(s)
Vectores Genéticos/genética , Lentivirus/genética , Mitosis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , ADN Satélite/genética , Femenino , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Ratas , Secuencias Repetidas Terminales/genética , Factores de Transcripción/genética , Integración Viral/genética
12.
Mol Ther ; 19(11): 2092-101, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21878903

RESUMEN

X-linked chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by a defect in the gp91(phox) gene. In an effort to treat X-CGD, we investigated the safety and efficacy of gene therapy using a retroviral vector, MT-gp91. Two X-CGD patients received autologous CD34(+) cells transduced with MT-gp91 after a conditioning regimen consisting of fludarabine and busulfan. The level of gene-marked cells was highest at day 21 (8.3 and 11.7% in peripheral blood cells) but decreased to 0.08 and 0.5%, respectively, 3 years after gene transfer. The level of functionally corrected cells, as determined by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase assay, reached a peak at day 17 (6.5% patient 1 (P1) and 14.3% patient 2 (P2) of total granulocytes) and declined to 0.05% (P1) and 0.21% (P2), 3 years later. Some retroviral vectors were found to have integrated within or close to the proto-oncogenes MDS1-EVI1, PRDM16, and CCND2; however, no abnormal cell expansion or related hematological malignancy was observed. Overall, the gene transfer procedure did not produce any serious adverse effects and was able to convert a significant fraction of blood cells to biologically functional cells, albeit for a short period of time.


Asunto(s)
Terapia Genética , Vectores Genéticos , Enfermedad Granulomatosa Crónica/terapia , Retroviridae/genética , Adolescente , Niño , Perfilación de la Expresión Génica , Vectores Genéticos/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/genética , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Transducción Genética , Resultado del Tratamiento , Integración Viral
13.
Mol Ther ; 19(11): 2031-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21862999

RESUMEN

Vector-associated side effects in clinical gene therapy have provided insights into the molecular mechanisms of hematopoietic regulation in vivo. Surprisingly, many retrovirus insertion sites (RIS) present in engrafted cells have been found to cluster nonrandomly in close association with specific genes. Our data demonstrate that these genes directly influence the in vivo fate of hematopoietic cell clones. Analysis of insertions thus far has been limited to individual clinical studies. Here, we studied >7,000 insertions retrieved from various studies. More than 40% of all insertions found in engrafted gene-modified cells were clustered in the same genomic areas covering only 0.36% of the genome. Gene classification analyses displayed significant overrepresentation of genes associated with hematopoietic functions and relevance for cell growth and survival in vivo. The similarity of insertion distributions indicates that vector insertions in repopulating cells cluster in predictable patterns. Thus, insertion analyses of preclinical in vitro and murine in vivo studies as well as vector insertion repertoires in clinical trials yielded concerted results and mark a small number of interesting genomic loci and genes that warrants further investigation of the biological consequences of vector insertions.


Asunto(s)
Gammaretrovirus/genética , Terapia Genética/efectos adversos , Vectores Genéticos/efectos adversos , Genoma , Integración Viral , Animales , Mapeo Cromosómico , Redes Reguladoras de Genes , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Primates , Trasplantes , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/genética , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X/terapia
14.
Mol Ther ; 19(7): 1193-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21540837

RESUMEN

Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA.


Asunto(s)
Anemia de Fanconi/terapia , Terapia Genética/métodos , Congresos como Asunto , Células Madre Hematopoyéticas/citología , Humanos , Trasplante de Células Madre/métodos
15.
J Clin Invest ; 118(9): 3143-50, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18688286

RESUMEN

X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone. However, leukemogenesis was likely precipitated by the acquisition of other genetic abnormalities unrelated to vector insertion, including a gain-of-function mutation in NOTCH1, deletion of the tumor suppressor gene locus cyclin-dependent kinase 2A (CDKN2A), and translocation of the TCR-beta region to the STIL-TAL1 locus. These findings highlight a general toxicity of endogenous gammaretroviral enhancer elements and also identify a combinatorial process during leukemic evolution that will be important for risk stratification and for future protocol design.


Asunto(s)
Cromosomas Humanos X , Terapia Genética/efectos adversos , Terapia Genética/métodos , Mutación , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiología , Inmunodeficiencia Combinada Grave/terapia , Proteínas Adaptadoras Transductoras de Señales , Antineoplásicos/farmacología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Proteínas de Unión al ADN/genética , Estudios de Seguimiento , Humanos , Lactante , Proteínas con Dominio LIM , Masculino , Metaloproteínas/genética , Modelos Biológicos , Mutagénesis , Leucemia-Linfoma Linfoblástico de Células T Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Proteínas Proto-Oncogénicas , Receptor Notch1/genética , Receptores de Interleucina-2/genética , Inmunodeficiencia Combinada Grave/complicaciones
16.
Nat Methods ; 4(12): 1051-7, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18049469

RESUMEN

Integrating vector systems used in clinical gene therapy have proven their therapeutic potential in the long-term correction of immunodeficiencies. The integration loci of such vectors in the cellular genome represent a molecular marker unique for each transduced cell and its clonal progeny. To gain insight into the physiology of gene-modified hematopoietic repopulation and vector-related influences on clonal contributions, we have previously introduced a technology--linear amplification-mediated (LAM) PCR--for detecting and sequencing unknown DNA flanking sequences down to the single cell level (Supplementary Note online). LAM-PCR analyses have enabled qualitative and quantitative measurements of the clonal kinetics of hematopoietic regeneration in gene transfer studies, and uncovered the clonal derivation of non-leukemogenic and leukemogenic insertional side effects in preclinical and clinical gene therapy studies. The reliability and robustness of this method results from the initial preamplification of the vector-genome junctions preceding nontarget DNA removal via magnetic selection. Subsequent steps are carried out on a semisolid streptavidin phase, including synthesis of double complementary strands, restriction digest, ligation of a linker cassette onto the genomic end of the fragment and exponential PCR(s) with vector- and linker cassette-specific primers. LAM-PCR can be adjusted to all unknown DNA sequences adjacent to a known DNA sequence. Here we describe the use of LAM-PCR analyses to identify 5' long terminal repeat (LTR) retroviral vector adjacent genomic sequences.


Asunto(s)
Mapeo Cromosómico/métodos , Elementos Transponibles de ADN/genética , Marcadores Genéticos/genética , Reacción en Cadena de la Polimerasa/métodos , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Datos de Secuencia Molecular
17.
Methods Mol Biol ; 506: 363-72, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19110638

RESUMEN

In order to restore or to introduce a gene function integrating viral vector systems are used to genetically modify hematopoietic stem cells. The occurrence of immortalized cell clones after transduction in vitro (Blood 106:3932-3939, 2005) and clonal dominance as well as leukemia in preclinical (Nat. Med. 12:401- 409, 2006; Blood 106:2530-2533, 2005; Science 308:1171-1174, 2005; Science 296:497, 2002; Blood 107:3865-3867, 2006) and clinical (Nat. Med. 12:401-409, 2006; Science 302:415-419, 2003; J. Clin. Invest. 118:3143-3150, 2008) gene therapy trials revealed that the nondirected integration of a vector may be associated with serious side effects. By means of the linear amplification-mediated PCR (LAM-PCR) (Blood 100:2737-2743, 2002; Nat. Methods 4:1051-1057, 2007) it is possible to identify miscellaneous vector-genome junctions in one sample, each unique for one integration clone down to the single cell level. Thus this method allows to determine the clonality of a genetically modified hematopoietic repopulation as well as to sequence the vector integration sites and therefore to analyze the integration site distribution and the influence of the vector integration site on the cell fate. The recognition of the integration site sequence corresponding to a specific clone allows the tracking of an individual clone in various samples.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Retroviridae/genética , Integración Viral , Secuencia de Bases , Cartilla de ADN
18.
Nat Biotechnol ; 24(6): 687-96, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16732270

RESUMEN

Insertional mutagenesis represents a major hurdle to gene therapy and necessitates sensitive preclinical genotoxicity assays. Cdkn2a-/- mice are susceptible to a broad range of cancer-triggering genetic lesions. We exploited hematopoietic stem cells from these tumor-prone mice to assess the oncogenicity of prototypical retroviral and lentiviral vectors. We transduced hematopoietic stem cells in matched clinically relevant conditions, and compared integration site selection and tumor development in transplanted mice. Retroviral vectors triggered dose-dependent acceleration of tumor onset contingent on long terminal repeat activity. Insertions at oncogenes and cell-cycle genes were enriched in early-onset tumors, indicating cooperation in tumorigenesis. In contrast, tumorigenesis was unaffected by lentiviral vectors and did not enrich for specific integrants, despite the higher integration load and robust expression of lentiviral vectors in all hematopoietic lineages. Our results validate a much-needed platform to assess vector safety and provide direct evidence that prototypical lentiviral vectors have low oncogenic potential, highlighting a major rationale for application to gene therapy.


Asunto(s)
Técnicas de Transferencia de Gen , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Pruebas de Mutagenicidad/métodos , Neoplasias/genética , Neoplasias/virología , Integración Viral , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Terapia Genética/métodos , Vectores Genéticos/genética , Ratones , Neoplasias/terapia , Transfección/métodos
19.
Methods Mol Biol ; 1448: 107-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27317177

RESUMEN

Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.


Asunto(s)
Técnicas de Transferencia de Gen , Lentivirus/genética , Integración Viral/genética , Terapia Genética/métodos , Vectores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Reacción en Cadena de la Polimerasa/métodos
20.
Curr Gene Ther ; 15(5): 481-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26264707

RESUMEN

"Ex vivo" regional gene therapy using lentiviral (LV) vectors to over-express bone morphogenetic protein 2 (BMP-2) is an effective way to enhance bone healing in animal models. Here, we evaluated two different "ex vivo" approaches using either "same day" rat bone marrow cells (SDRBMCs) or cultured rat bone marrow cells (C-RBMCs), both transduced with a LV based two-step transcriptional activation system overexpressing GFP (LV-TSTA-EGFP), to assess the fate of the transduced cells and the safety of this approach. The transduced cells were implanted in femoral defects of syngeneic rats. Animals were sacrificed at 4, 14, 28 and 56 days after surgery (n=5 per group). Viral copies were detectable in the defect site of SD-RBMC group and gradually declined at 8w (5 log decrease compared to 4d). In the C-RBMC animals, there was a 2-4 log decline in the viral copy numbers at 2w and 4w, but at 8w there was a relative rise (about 100 fold) in the number of the viral vectors in the defect site of 4 (out of 5) animals compared to the previous time points. For both gene transfer approaches, the pattern of tissue distribution was non-specific and no histological abnormalities were noted in either group. In summary, we demonstrated that the LV-TSTA transduced cells remain in the defect site for at least 56 days, though the numbers decreased over time. There were no consistent findings of viral copies in internal organs which is encouraging with respect to the development of this strategy for use in humans.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/virología , Huesos/virología , Lentivirus/genética , Lentivirus/metabolismo , Distribución Tisular/genética , Animales , Proteína Morfogenética Ósea 2/metabolismo , Huesos/metabolismo , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratas , Activación Transcripcional/genética , Transducción Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA