Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 614(7947): 349-357, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725930

RESUMEN

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism1. In tumours, however, the absolute rates of these pathways remain unclear. Here we optimize tracer infusion approaches to measure the rates of glycolysis and the TCA cycle in healthy mouse tissues, Kras-mutant solid tumours, metastases and leukaemia. Then, given the rates of these two pathways, we calculate total ATP synthesis rates. We find that TCA cycle flux is suppressed in all five primary solid tumour models examined and is increased in lung metastases of breast cancer relative to primary orthotopic tumours. As expected, glycolysis flux is increased in tumours compared with healthy tissues (the Warburg effect2,3), but this increase is insufficient to compensate for low TCA flux in terms of ATP production. Thus, instead of being hypermetabolic, as commonly assumed, solid tumours generally produce ATP at a slower than normal rate. In mouse pancreatic cancer, this is accommodated by the downregulation of protein synthesis, one of this tissue's major energy costs. We propose that, as solid tumours develop, cancer cells shed energetically expensive tissue-specific functions, enabling uncontrolled growth despite a limited ability to produce ATP.


Asunto(s)
Adenosina Trifosfato , Neoplasias de la Mama , Ciclo del Ácido Cítrico , Desaceleración , Neoplasias Pulmonares , Metástasis de la Neoplasia , Neoplasias Pancreáticas , Animales , Ratones , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Ciclo del Ácido Cítrico/fisiología , Metabolismo Energético , Glucólisis , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Especificidad de Órganos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Biosíntesis de Proteínas
2.
Mol Cell ; 73(3): 519-532.e4, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554946

RESUMEN

Transcriptional regulation occurs via changes to rates of different biochemical steps of transcription, but it remains unclear which rates are subject to change upon biological perturbation. Biochemical studies have suggested that stimuli predominantly affect the rates of RNA polymerase II (Pol II) recruitment and polymerase release from promoter-proximal pausing. Single-cell studies revealed that transcription occurs in discontinuous bursts, suggesting that features of such bursts like frequency and intensity could also be regulated. We combined Pol II chromatin immunoprecipitation sequencing (ChIP-seq) and single-cell transcriptional measurements to show that an independently regulated burst initiation step is required before polymerase recruitment can occur. Using a number of global and targeted transcriptional regulatory perturbations, we showed that biological perturbations regulated both burst initiation and polymerase pause release rates but seemed not to regulate polymerase recruitment rate. Our results suggest that transcriptional regulation primarily acts by changing the rates of burst initiation and polymerase pause release.


Asunto(s)
Células Madre Embrionarias de Ratones/enzimología , ARN Polimerasa II/metabolismo , ARN/biosíntesis , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética , Activación Transcripcional , Animales , Sitios de Unión , Línea Celular , Simulación por Computador , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Modelos Genéticos , Unión Proteica , ARN/genética , ARN Polimerasa II/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Factores de Tiempo
3.
Nat Chem Biol ; 20(9): 1123-1132, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38448734

RESUMEN

Metabolic efficiency profoundly influences organismal fitness. Nonphotosynthetic organisms, from yeast to mammals, derive usable energy primarily through glycolysis and respiration. Although respiration is more energy efficient, some cells favor glycolysis even when oxygen is available (aerobic glycolysis, Warburg effect). A leading explanation is that glycolysis is more efficient in terms of ATP production per unit mass of protein (that is, faster). Through quantitative flux analysis and proteomics, we find, however, that mitochondrial respiration is actually more proteome efficient than aerobic glycolysis. This is shown across yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead of aerobic glycolysis being valuable for fast ATP production, it correlates with high glycolytic protein expression, which promotes hypoxic growth. Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow respiratory cells during oxygen limitation. We accordingly propose that aerobic glycolysis emerges from cells maintaining a proteome conducive to both aerobic and hypoxic growth.


Asunto(s)
Adenosina Trifosfato , Glucólisis , Mitocondrias , Proteoma , Proteoma/metabolismo , Adenosina Trifosfato/metabolismo , Mitocondrias/metabolismo , Humanos , Animales , Saccharomyces cerevisiae/metabolismo , Proteómica/métodos , Ratones , Aerobiosis
4.
Mol Cell ; 66(1): 102-116.e7, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388437

RESUMEN

Bromodomain and extraterminal motif (BET) proteins are pharmacologic targets for the treatment of diverse diseases, yet the roles of individual BET family members remain unclear. We find that BRD2, but not BRD4, co-localizes with the architectural/insulator protein CCCTC-binding factor (CTCF) genome-wide. CTCF recruits BRD2 to co-bound sites whereas BRD2 is dispensable for CTCF occupancy. Disruption of a CTCF/BRD2-occupied element positioned between two unrelated genes enables regulatory influence to spread from one gene to another, suggesting that CTCF and BRD2 form a transcriptional boundary. Accordingly, single-molecule mRNA fluorescence in situ hybridization (FISH) reveals that, upon site-specific CTCF disruption or BRD2 depletion, expression of the two genes becomes increasingly correlated. HiC shows that BRD2 depletion weakens boundaries co-occupied by CTCF and BRD2, but not those that lack BRD2. These findings indicate that BRD2 supports boundary activity, and they raise the possibility that pharmacologic BET inhibitors can influence gene expression in part by perturbing domain boundary function.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Sitios de Unión , Factor de Unión a CCCTC , Sistemas CRISPR-Cas , Línea Celular , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Edición Génica/métodos , Hibridación Fluorescente in Situ , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Imagen Individual de Molécula/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
5.
Mol Cell ; 62(2): 237-247, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27067601

RESUMEN

Mammalian genes transcribe RNA not continuously, but in bursts. Transcriptional output can be modulated by altering burst fraction or burst size, but how regulatory elements control bursting parameters remains unclear. Single-molecule RNA FISH experiments revealed that the ß-globin enhancer (LCR) predominantly augments transcriptional burst fraction of the ß-globin gene with modest stimulation of burst size. To specifically measure the impact of long-range chromatin contacts on transcriptional bursting, we forced an LCR-ß-globin promoter chromatin loop. We observed that raising contact frequencies increases burst fraction but not burst size. In cells in which two developmentally distinct LCR-regulated globin genes are cotranscribed in cis, burst sizes of both genes are comparable. However, allelic co-transcription of both genes is statistically disfavored, suggesting mutually exclusive LCR-gene contacts. These results are consistent with competition between the ß-type globin genes for LCR contacts and suggest that LCR-promoter loops are formed and released with rapid kinetics.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Elementos de Facilitación Genéticos , Transcripción Genética , Activación Transcripcional , Globinas beta/genética , Animales , Línea Celular , Cromatina/química , Cromatina/metabolismo , Eritroblastos/metabolismo , Eritropoyesis/genética , Humanos , Hibridación Fluorescente in Situ , Cinética , Región de Control de Posición , Ratones , Cultivo Primario de Células , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transfección , Globinas beta/metabolismo
6.
Genes Dev ; 30(12): 1423-39, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27340175

RESUMEN

During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states.


Asunto(s)
Ciclo Celular/genética , Fase G1/genética , Genoma/genética , Mitosis/genética , Activación Transcripcional/genética , Animales , Línea Celular , Células Cultivadas , Cromatina/metabolismo , ADN Intergénico/genética , Elementos de Facilitación Genéticos/genética , Eritroblastos/citología , Ratones , Regiones Promotoras Genéticas/genética , Regulación hacia Arriba
7.
Nat Chem Biol ; 17(12): 1262-1270, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663942

RESUMEN

DNA deaminase enzymes play key roles in immunity and have recently been harnessed for their biotechnological applications. In base editors (BEs), the combination of DNA deaminase mutator activity with CRISPR-Cas localization confers the powerful ability to directly convert one target DNA base into another. While efforts have been made to improve targeting efficiency and precision, all BEs so far use a constitutively active DNA deaminase. The absence of regulatory control over promiscuous deaminase activity remains a major limitation to accessing the widespread potential of BEs. Here, we reveal sites that permit splitting of DNA cytosine deaminases into two inactive fragments, whose reapproximation reconstitutes activity. These findings allow for the development of split-engineered BEs (seBEs), which newly enable small-molecule control over targeted mutator activity. We show that the seBE strategy facilitates robust regulated editing with BE scaffolds containing diverse deaminases, offering a generalizable solution for temporally controlling precision genome editing.


Asunto(s)
Nucleósido Desaminasas/química , Biotecnología , Sistemas CRISPR-Cas , Citosina/química , ADN/química , Roturas del ADN de Doble Cadena , Escherichia coli , Edición Génica , Conformación de Ácido Nucleico , Nucleósido Desaminasas/genética , Sirolimus/química
8.
Cell Chem Biol ; 31(5): 932-943.e8, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759619

RESUMEN

Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate contributions to purine nucleotides from salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic or lymph node T cells) synthesize purines de novo. Shortage of 1C units for T cell purine synthesis is accordingly a potential bottleneck for anti-tumor immunity. Supplementing 1C units by infusing formate drives formate assimilation into purines in tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling kinetic control of formate production. Safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade in MC38 tumors, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.


Asunto(s)
Carbono , Ratones Endogámicos C57BL , Purinas , Animales , Ratones , Purinas/química , Purinas/farmacología , Carbono/química , Carbono/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Formiatos/química , Formiatos/metabolismo , Formiatos/farmacología , Metanol/química , Metanol/farmacología , Femenino , Humanos , Línea Celular Tumoral
9.
Cell Metab ; 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39413791

RESUMEN

Despite the known metabolic benefits of exercise, an integrated metabolic understanding of exercise is lacking. Here, we use in vivo steady-state isotope-labeled infusions to quantify fuel flux and oxidation during exercise in fasted, fed, and exhausted female mice, revealing several novel findings. Exercise strongly promoted glucose fluxes from liver glycogen, lactate, and glycerol, distinct from humans. Several organs spared glucose, a process that broke down in exhausted mice despite concomitant hypoglycemia. Proteolysis increased markedly, also divergent from humans. Fatty acid oxidation dominated during fasted exercise. Ketone production and oxidation rose rapidly, seemingly driven by a hepatic bottleneck caused by gluconeogenesis-induced cataplerotic stress. Altered fuel consumption was observed in organs not directly involved in muscle contraction, including the pancreas and brown fat. Several futile cycles surprisingly persisted during exercise, despite their energy cost. In sum, we provide a comprehensive, integrated, holistic, and quantitative accounting of metabolism during exercise in an intact organism.

10.
Nat Rev Cancer ; 23(12): 863-878, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37907620

RESUMEN

Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.


Asunto(s)
Redes y Vías Metabólicas , Neoplasias , Humanos , Ciclo del Ácido Cítrico , Isótopos , Neoplasias/metabolismo , Microambiente Tumoral
11.
bioRxiv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37961420

RESUMEN

Nucleotides perform important metabolic functions, carrying energy and feeding nucleic acid synthesis. Here, we use isotope tracing-mass spectrometry to quantitate the contributions to purine nucleotides of salvage versus de novo synthesis. We further explore the impact of augmenting a key precursor for purine synthesis, one-carbon (1C) units. We show that tumors and tumor-infiltrating T cells (relative to splenic T cells) synthesize purines de novo. Purine synthesis requires two 1C units, which come from serine catabolism and circulating formate. Shortage of 1C units is a potential bottleneck for anti-tumor immunity. Elevating circulating formate drives its usage by tumor-infiltrating T cells. Orally administered methanol functions as a formate pro-drug, with deuteration enabling control of formate-production kinetics. In MC38 tumors, safe doses of methanol raise formate levels and augment anti-PD-1 checkpoint blockade, tripling durable regressions. Thus, 1C deficiency can gate antitumor immunity and this metabolic checkpoint can be overcome with pharmacological 1C supplementation.

12.
Nat Metab ; 3(7): 896-908, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34211182

RESUMEN

Altered metabolic activity contributes to the pathogenesis of a number of diseases, including diabetes, heart failure, cancer, fibrosis and neurodegeneration. These diseases, and organismal metabolism more generally, are only partially recapitulated by cell culture models. Accordingly, it is important to measure metabolism in vivo. Over the past century, researchers studying glucose homeostasis have developed strategies for the measurement of tissue-specific and whole-body metabolic activity (pathway fluxes). The power of these strategies has been augmented by recent advances in metabolomics technologies. Here, we review techniques for measuring metabolic fluxes in intact mammals and discuss how to analyse and interpret the results. In tandem, we describe important findings from these techniques, and suggest promising avenues for their future application. Given the broad importance of metabolism to health and disease, more widespread application of these methods holds the potential to accelerate biomedical progress.


Asunto(s)
Metaboloma , Metabolómica/métodos , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Homeostasis , Humanos , Mamíferos , Redes y Vías Metabólicas , Especificidad de Órganos
13.
Cell Metab ; 33(2): 367-378.e5, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33472024

RESUMEN

Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use 13C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis. Yet circulating glucose highly labels glycolytic intermediates in only a few tissues: blood, spleen, diaphragm, and soleus muscle. Most glycolytic intermediates in the bulk of body tissue, including liver and quadriceps muscle, come instead from glycogen. Gluconeogenesis contributes less but also broadly to glycolytic intermediates, and its flux persists with physiologic feeding (but not hyperinsulinemic clamp). Instead of suppressing gluconeogenesis, feeding activates oxidation of circulating glucose and lactate to maintain glucose homeostasis. Thus, the bulk of the body slowly breaks down internally stored glycogen while select tissues rapidly catabolize circulating glucose to lactate for oxidation throughout the body.


Asunto(s)
Diafragma/metabolismo , Músculo Esquelético/metabolismo , Bazo/metabolismo , Animales , Glucemia/metabolismo , Isótopos de Carbono , Gluconeogénesis , Glucógeno/sangre , Glucógeno/metabolismo , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Artículo en Inglés | MEDLINE | ID: mdl-26370411

RESUMEN

The study of nuclear structure falls between the fields of cell biology and molecular biology and draws on techniques from both fields. In recent years, many exciting advances have been made in these areas, including single-molecule and superresolution imaging and the development of chromosome conformation capture (3C)-based technologies, which have brought the advent of genome-wide analysis of chromatin structure and contacts. However, many questions remain as to the function of nuclear structures, in particular their influence on transcription. Here we describe studies that have directly manipulated nuclear architecture at various levels and thus have clarified the causal influence of structure on transcription. We will also highlight open questions in the field, most notably regarding our understanding of the dynamics and variability in nuclear structure and its influence on gene expression.


Asunto(s)
Núcleo Celular , Cromatina/metabolismo , Cromosomas , Regulación de la Expresión Génica , Animales , Genoma , Humanos , Imagen Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA