Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 19(9): e1011630, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37669280

RESUMEN

Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and bacteraemia and is capable of remarkable phenotypic plasticity, responding rapidly to environmental change. Pneumococcus is a nasopharyngeal commensal, but is responsible for severe, acute infections following dissemination within-host. Pneumococcus is adept at utilising host resources, but the airways are compartmentalised and those resources are not evenly distributed. Challenges and opportunities in metabolite acquisition within different airway niches may contribute to the commensal-pathogen switch when pneumococcus moves from nasopharynx into lungs. We used NMR to characterise the metabolic landscape of the mouse airways, in health and during infection. Using paired nasopharynx and lung samples from naïve animals, we identified fundamental differences in metabolite bioavailability between airway niches. Pneumococcal pneumonia was associated with rapid and dramatic shifts in the lung metabolic environment, whilst nasopharyngeal carriage led to only modest change in upper airway metabolite profiles. NMR spectra derived from the nasopharynx of mice infected with closely-related pneumococcal strains that differ in their colonisation potential could be distinguished from one another using multivariate dimensionality reduction methods. The resulting models highlighted that increased branched-chain amino acid (BCAA) bioavailability in nasopharynx is a feature of infection with the high colonisation potential strain. Subsequent analysis revealed increased expression of BCAA transport genes and increased intracellular concentrations of BCAA in that same strain. Movement from upper to lower airway environments is associated with shifting challenges in metabolic resource allocation for pneumococci. Efficient biosynthesis, liberation or acquisition of BCAA is a feature of adaptation to nasopharyngeal colonisation.


Asunto(s)
Nariz , Infecciones Neumocócicas , Animales , Ratones , Metabolómica , Streptococcus pneumoniae , Aminoácidos de Cadena Ramificada
2.
Microbiology (Reading) ; 169(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428539

RESUMEN

A workshop was held by the PIPE-CF strategic research centre to consider preclinical testing of antimicrobials for cystic fibrosis (CF). The workshop brought together groups of people from the CF community to discuss current challenges and identify priorities when developing CF therapeutics. This paper summarizes the key points from the workshop from the different sessions, including talks given by presenters on the day and round table discussions. Currently, it is felt that there is a large disconnect throughout the community, with communication between patients, clinicians and researchers being the main issue. This leads to little consideration being given to factors such as treatment regimes, routes of administration and side effects when developing new therapies, that could alter the day-to-day lifestyles of people living with CF. Translation of numerical data that are obtained in the laboratory to successful outcomes of clinical trials is also a key challenge facing researchers today. Laboratory assays in preclinical testing involve basing results on bacterial clearance and decrease in viable cells, when these are not factors that are considered when determining the success of a treatment in the clinic. However, there are several models currently in development that seek to tackle some of these issues, such as the organ-on-a-chip technology and adaptation of a hollow-fibre model, as well as the development of media that aim to mimic the niche environments of a CF respiratory tract. It is hoped that by summarizing these opinions and discussing current research, the communication gap between groups can begin to close.


Asunto(s)
Antiinfecciosos , Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Antiinfecciosos/uso terapéutico , Adaptación Fisiológica , Análisis de Secuencia por Matrices de Oligonucleótidos , Pulmón
3.
Mol Biol Evol ; 38(6): 2209-2226, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33502519

RESUMEN

Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/patogenicidad , Animales , Femenino , Genoma Bacteriano , Humanos , Pulmón/microbiología , Ratones , Nasofaringe/microbiología , Distribución Aleatoria , Streptococcus pneumoniae/genética , Factores de Virulencia
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647527

RESUMEN

Pseudomonas aeruginosa is a cause of chronic respiratory tract infections in people with cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Prolonged infection allows the accumulation of mutations and horizontal gene transfer, increasing the likelihood of adaptive phenotypic traits. Adaptation is proposed to arise first in bacterial populations colonizing upper airway environments. Here, we model this process using an experimental evolution approach. Pseudomonas aeruginosa PAO1, which is not airway adapted, was serially passaged, separately, in media chemically reflective of upper or lower airway environments. To explore whether the CF environment selects for unique traits, we separately passaged PAO1 in airway-mimicking media with or without CF-specific factors. Our findings demonstrated that all airway environments-sinus and lungs, under CF and non-CF conditions-selected for loss of twitching motility, increased resistance to multiple antibiotic classes, and a hyper-biofilm phenotype. These traits conferred increased airway colonization potential in an in vivo model. CF-like conditions exerted stronger selective pressures, leading to emergence of more pronounced phenotypes. Loss of twitching was associated with mutations in type IV pili genes. Type IV pili mediate surface attachment, twitching, and induction of cAMP signalling. We additionally identified multiple evolutionary routes to increased biofilm formation involving regulation of cyclic-di-GMP signalling. These included the loss of function mutations in bifA and dipA phosphodiesterase genes and activating mutations in the siaA phosphatase. These data highlight that airway environments select for traits associated with sessile lifestyles and suggest upper airway niches support emergence of phenotypes that promote establishment of lung infection.


Asunto(s)
Adaptación Fisiológica , Biopelículas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/microbiología , Biopelículas/crecimiento & desarrollo , Animales , Pulmón/microbiología , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Sistemas de Mensajero Secundario , Fibrosis Quística/microbiología , Ratones , Humanos , Antibacterianos/farmacología , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Mutación , Fenotipo
5.
Microbiol Spectr ; 11(1): e0310322, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36507681

RESUMEN

The short generation time of many bacterial pathogens allows the accumulation of de novo mutations during routine culture procedures used for the preparation and propagation of bacterial stocks. Taking the major human pathogen Streptococcus pneumoniae as an example, we sought to determine the influence of standard laboratory handling of microbes on within-strain genetic diversity and explore how these changes influence virulence characteristics and experimental outcomes. A single culture of S. pneumoniae D39 grown overnight resulted in the enrichment of previously rare genotypes present in bacterial freezer stocks and the introduction of new variation to the bacterial population through the acquisition of mutations. A comparison of D39 stocks from different laboratories demonstrated how changes in bacterial population structure taking place during individual culture events can cumulatively lead to fixed, divergent change that profoundly alters virulence characteristics. The passage of D39 through mouse models of infection, a process used to standardize virulence, resulted in the enrichment of high-fitness genotypes that were originally rare (<2% frequency) in D39 culture collection stocks and the loss of previously dominant genotypes. In the most striking example, the selection of a <2%-frequency genotype carrying a mutation in sdhB, a gene thought to be essential for the establishment of lung infection, was associated with enhanced systemic virulence. Three separately passaged D39 cultures originating from the same frozen stocks showed considerable genetic divergence despite comparable virulence. IMPORTANCE Laboratory bacteriology involves the use of high-density cultures that we often assume to be clonal but that in reality are populations consisting of multiple genotypes at various abundances. We have demonstrated that the genetic structure of a single population of a widely used Streptococcus pneumoniae strain can be substantially altered by even short-term laboratory handling and culture and that, over time, this can lead to changes in virulence characteristics. Our findings suggest that caution should be applied when comparing data generated in different laboratories using the same strain but also when comparing data within laboratories over time. Given the dramatic reductions in the cost of next-generation sequencing technology in recent years, we advocate for the frequent sampling and sequencing of bacterial isolate collections.


Asunto(s)
Proteínas Bacterianas , Streptococcus pneumoniae , Animales , Ratones , Proteínas Bacterianas/genética , Mutación , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad , Virulencia/genética
6.
Sci Adv ; 9(12): eade1851, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947610

RESUMEN

Sensing of pathogens by ubiquitination is a critical arm of cellular immunity. However, universal ubiquitination targets on microbes remain unidentified. Here, using in vitro, ex vivo, and in vivo studies, we identify the first protein-based ubiquitination substrates on phylogenetically diverse bacteria by unveiling a strategy that uses recognition of degron-like motifs. Such motifs form a new class of intra-cytosolic pathogen-associated molecular patterns (PAMPs). Their incorporation enabled recognition of nonubiquitin targets by host ubiquitin ligases. We find that SCFFBW7 E3 ligase, supported by the regulatory kinase, glycogen synthase kinase 3ß, is crucial for effective pathogen detection and clearance. This provides a mechanistic explanation for enhanced risk of infections in patients with chronic lymphocytic leukemia bearing mutations in F-box and WD repeat domain containing 7 protein. We conclude that exploitation of this generic pathogen sensing strategy allows conservation of host resources and boosts antimicrobial immunity.


Asunto(s)
Proteínas F-Box , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Fosforilación , Ubiquitinación , Bacterias/metabolismo
7.
J Med Microbiol ; 71(12)2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36748497

RESUMEN

Chronic respiratory infection is the primary driver of mortality in individuals with cystic fibrosis (CF). Existing drug screening models utilised in preclinical antimicrobial development are unable to mimic the complex CF respiratory environment. Consequently, antimicrobials showing promising activity in preclinical models often fail to translate through to clinical efficacy in people with CF. Model systems used in CF anti-infective drug discovery and development range from antimicrobial susceptibility testing in nutrient broth, through to 2D and 3D in vitro tissue culture systems and in vivo models. No single model fully recapitulates every key aspect of the CF lung. To improve the outcomes of people with CF (PwCF) it is necessary to develop a set of preclinical models that collectively recapitulate the CF respiratory environment to a high degree of accuracy. Models must be validated for their ability to mimic aspects of the CF lung and associated lung infection, through evaluation of biomarkers that can also be assessed following treatment in the clinic. This will give preclinical models greater predictive power for identification of antimicrobials with clinical efficacy. The landscape of CF is changing, with the advent of modulator therapies that correct the function of the CFTR protein, while antivirulence drugs and phage therapy are emerging alternative treatments to chronic infection. This review discusses the challenges faced in current antimicrobial development pipelines, including the advantages and disadvantages of current preclinical models and the impact of emerging treatments.


Asunto(s)
Antiinfecciosos , Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Modelos Biológicos , Infección Persistente , Pseudomonas aeruginosa , Infecciones por Pseudomonas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA