Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Malar J ; 22(1): 23, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670398

RESUMEN

The use of Unmanned Aerial Vehicles (UAVs) has expanded rapidly in ecological conservation and agriculture, with a growing literature describing their potential applications in global health efforts including vector control. Vector-borne diseases carry severe public health and economic impacts to over half of the global population yet conventional approaches to the surveillance and treatment of vector habitats is typically laborious and slow. The high mobility of UAVs allows them to reach remote areas that might otherwise be inaccessible to ground-based teams. Given the rapidly expanding examples of these tools in vector control programmes, there is a need to establish the current knowledge base of applications for UAVs in this context and assess the strengths and challenges compared to conventional methodologies. This review aims to summarize the currently available knowledge on the capabilities of UAVs in both malaria control and in vector control more broadly in cases where the technology could be readily adapted to malaria vectors. This review will cover the current use of UAVs in vector habitat surveillance and deployment of control payloads, in comparison with their existing conventional approaches. Finally, this review will highlight the logistical and regulatory challenges in scaling up the use of UAVs in malaria control programmes and highlight potential future developments.


Asunto(s)
Malaria , Dispositivos Aéreos No Tripulados , Humanos , Malaria/prevención & control , Agricultura , Ecosistema , Tecnología
2.
Parasit Vectors ; 17(1): 321, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39068490

RESUMEN

BACKGROUND: Urogenital schistosomiasis is caused by the parasitic trematode Schistosoma haematobium. Sensitive and specific point-of-care diagnostics are needed for elimination of this disease. Recombinase polymerase amplification (RPA) assays meet these criteria, and an assay to diagnose S. haematobium has been developed (Sh-RPA). However, false-positive results can occur, and optimisation of reaction conditions to mitigate these is needed. Ease of use and compatibility of DNA extraction methods must also be considered. METHODS: Using synthetic DNA, S. haematobium genomic DNA (gDNA), and urine samples from clinical cases, Sh-RPA reactions incorporating different betaine concentrations (0 M, 1 M, 2.5 M, 12.5 M) and the sample-to-water ratios were tested to determine effects on assay specificity and sensitivity. In addition, five commercial DNA extraction kits suitable for use in resource-limited settings were used to obtain gDNA from single S. haematobium eggs and evaluated in terms of DNA quality, quantity, and compatibility with the Sh-RPA assay. All samples were also evaluated by quantitative polymerase chain reaction (qPCR) to confirm DNA acquisition. RESULTS: The analytical sensitivity of the Sh-RPA with all betaine concentrations was ≥ 10 copies of the synthetic Dra1 standard and 0.1 pg of S. haematobium gDNA. The addition of betaine improved Sh-RPA assay specificity in all reaction conditions, and the addition of 2.5 M of betaine together with the maximal possible sample volume of 12.7 µl proved to be the optimum reaction conditions. DNA was successfully isolated from a single S. haematobium egg using all five commercial DNA extraction kits, but the Sh-RPA performance of these kits varied, with one proving to be incompatible with RPA reactions. CONCLUSIONS: The addition of 2.5 M of betaine to Sh-RPA reactions improved reaction specificity whilst having no detrimental effect on sensitivity. This increases the robustness of the assay, advancing the feasibility of using the Sh-RPA assay in resource-limited settings. The testing of commercial extraction kits proved that crude, rapid, and simple methods are sufficient for obtaining DNA from single S. haematobium eggs, and that these extracts can be used with Sh-RPA in most cases. However, the observed incompatibility of specific kits with Sh-RPA highlights the need for each stage of a molecular diagnostic platform to be robustly tested prior to implementation.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , Schistosoma haematobium , Esquistosomiasis Urinaria , Sensibilidad y Especificidad , Animales , Schistosoma haematobium/genética , Schistosoma haematobium/aislamiento & purificación , Esquistosomiasis Urinaria/diagnóstico , Esquistosomiasis Urinaria/orina , Esquistosomiasis Urinaria/parasitología , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , ADN de Helmintos/genética , ADN de Helmintos/aislamiento & purificación , Recombinasas/metabolismo , Recombinasas/genética , Técnicas de Diagnóstico Molecular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA