Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2304227, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649176

RESUMEN

Continuous flow manufacturing is an innovative technology mainly applied in the chemical and pharmaceutical industries that is progressively being adapted to the manufacturing of nanomaterials to overcome the challenge of reproducing a product with consistent characteristics at a large scale. Here, a flow photochemical system is designed and prototyped for the synthesis of holey graphene oxides (hGOs). Compared to existing methods for the synthesis of hGO, the process is fast, highly scalable, and controllable. Through a combination of rigorous data analysis using machine learning algorithms on transmission electron microscope images and systematic studies of process parameters, it is demonstrated that characteristics of the produced hGO (i.e., porosity and pore size) are remarkably reproducible to the extent that it can be predicted by empirical models of processing-property correlations. Depending on the tailored nanopore structures, the synthesized hGOs out-performed GO in a range of applications that can benefit from the nanoporous two-dimensional (2D) sheets such as in supercapacitors, gas adsorption, and nanofiltration membranes. These results are significant in offering new perspectives on the low-cost industrialization of 2D nanomaterials.

2.
Adv Sci (Weinh) ; 7(20): 2001600, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33101862

RESUMEN

Significant research to define and standardize terminologies for describing stacks of atomic layers in bulk graphene materials has been undertaken. Most methods to measure the stacking characteristics are time consuming and are not suited for obtaining information by directly imaging dispersions. Conventional optical microscopy has difficulty in identifying the size and thickness of a few layers of graphene stacks due to their low photon absorption capacity. Utilizing a contrast based on anisotropic refractive index in 2D materials, it is shown that localized thickness-specific information can be captured in birefringence images of graphene dispersions. Coupling pixel-by-pixel information from brightfield and birefringence images and using unsupervised statistical learning algorithms, three unique data clusters representing flakes (unexfoliated), nanoplatelets (partially exfoliated), and 2D sheets (well-exfoliated) species in various laboratory-based and commercial dispersions of graphene and graphene oxide are identified. The high-throughput, multitasking capability of the approach to classify stacking at sub-nanometer to micrometer scale and measure the size, thickness, and concentration of exfoliated-species in generic dispersions of graphene/graphene oxide are demonstrated. The method, at its current stage, requires less than half an hour to quantitatively assess one sample of graphene/graphene oxide dispersion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA