Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(11): 111101, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363016

RESUMEN

The levitated sensor detector (LSD) is a compact resonant gravitational-wave (GW) detector based on optically trapped dielectric particles that is under construction. The LSD sensitivity has more favorable frequency scaling at high frequencies compared to laser interferometer detectors such as LIGO and VIRGO. We propose a method to substantially improve the sensitivity by optically levitating a multilayered stack of dielectric discs. These stacks allow the use of a more massive levitated object while exhibiting minimal photon recoil heating due to light scattering. Over an order of magnitude of unexplored frequency space for GWs above 10 kHz is accessible with an instrument 10 to 100 meters in size. Particularly motivated sources in this frequency range are gravitationally bound states of the axion from quantum chromodynamics with decay constant near the grand unified theory scale that form through black hole superradiance and annihilate to GWs. The LSD is also sensitive to GWs from binary coalescence of sub-solar-mass primordial black holes and as-yet unexplored new physics in the high-frequency GW window.

2.
Phys Rev Lett ; 128(23): 231802, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35749181

RESUMEN

Uncovering the nature of dark matter is one of the most important goals of particle physics. Light bosonic particles, such as the dark photon, are well-motivated candidates: they are generally long-lived, weakly interacting, and naturally produced in the early universe. In this work, we report on Light A^{'} Multilayer Periodic Optical SNSPD Target, a proof-of-concept experiment searching for dark photon dark matter in the eV mass range, via coherent absorption in a multilayer dielectric haloscope. Using a superconducting nanowire single-photon detector (SNSPD), we achieve efficient photon detection with a dark count rate of ∼6×10^{-6} counts/s. We find no evidence for dark photon dark matter in the mass range of ∼0.7-0.8 eV with kinetic mixing ε≳10^{-12}, improving existing limits in ε by up to a factor of 2. With future improvements to SNSPDs, our architecture could probe significant new parameter space for dark photon and axion dark matter in the meV to 10 eV mass range.

3.
Phys Rev Lett ; 119(13): 131801, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-29341667

RESUMEN

We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2×10^{-45} cm^{2}, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA