Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Med Genet A ; 182(11): 2755-2760, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32935439

RESUMEN

Loeys-Dietz syndrome (LDS), a connective tissue disorder characterized by its vascular, skeletal, craniofacial, and cutaneous manifestations is caused by mutations in one of six genes (TGFBR1, TGFBR2, SMAD2, SMAD3, TGFB2, and TGFB3). Until recently, all reported cases of LDS have been attributed to heterozygous pathogenic variants in these genes. Here, we report the first case of Loeys-Dietz syndrome due to SMAD3 biallelic likely pathogenic variants in a 15-year-old male with classic Loeys-Dietz features, including dysmorphic facial features, significant scoliosis, and pectus excavatum, arachnodactyly, severe aortic root dilation, and diffuse arterial tortuosity. His parents are each heterozygous for the likely pathogenic variant and are more mildly affected. To our knowledge, this represents the first reported case of biallelic SMAD3-related Loeys-Dietz syndrome and the third case in the literature of biallelic LDS, indicating that there are multiple genetic modes of inheritance underlying this disorder.


Asunto(s)
Síndrome de Loeys-Dietz/patología , Mutación , Proteína smad3/genética , Adolescente , Adulto , Alelos , Femenino , Humanos , Síndrome de Loeys-Dietz/genética , Masculino
2.
Eur J Hum Genet ; 31(10): 1117-1124, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37500725

RESUMEN

Nuclear receptor subfamily 2 group F member 2 (NR2F2 or COUP-TF2) encodes a transcription factor which is expressed at high levels during mammalian development. Rare heterozygous Mendelian variants in NR2F2 were initially identified in individuals with congenital heart disease (CHD), then subsequently in cohorts of congenital diaphragmatic hernia (CDH) and 46,XX ovotesticular disorders/differences of sexual development (DSD); however, the phenotypic spectrum associated with pathogenic variants in NR2F2 remains poorly characterized. Currently, less than 40 individuals with heterozygous pathogenic variants in NR2F2 have been reported. Here, we review the clinical and molecular details of 17 previously unreported individuals with rare heterozygous NR2F2 variants, the majority of which were de novo. Clinical features were variable, including intrauterine growth restriction (IUGR), CHD, CDH, genital anomalies, DSD, developmental delays, hypotonia, feeding difficulties, failure to thrive, congenital and acquired microcephaly, dysmorphic facial features, renal failure, hearing loss, strabismus, asplenia, and vascular malformations, thus expanding the phenotypic spectrum associated with NR2F2 variants. The variants seen were predicted loss of function, including a nonsense variant inherited from a mildly affected mosaic mother, missense and a large deletion including the NR2F2 gene. Our study presents evidence for rare, heterozygous NR2F2 variants causing a highly variable syndrome of congenital anomalies, commonly associated with heart defects, developmental delays/intellectual disability, dysmorphic features, feeding difficulties, hypotonia, and genital anomalies. Based on the new and previous cases, we provide clinical recommendations for evaluating individuals diagnosed with an NR2F2-associated disorder.


Asunto(s)
Anomalías Múltiples , Cardiopatías Congénitas , Hernias Diafragmáticas Congénitas , Discapacidad Intelectual , Animales , Humanos , Anomalías Múltiples/genética , Anomalías Múltiples/diagnóstico , Factor de Transcripción COUP II/genética , Cardiopatías Congénitas/genética , Hernias Diafragmáticas Congénitas/genética , Discapacidad Intelectual/genética , Hipotonía Muscular , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA