RESUMEN
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Asunto(s)
Ataxias Espinocerebelosas , Animales , Ratones , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxia , Elongasas de Ácidos Grasos/genética , Secuencia de Aminoácidos , MutaciónRESUMEN
Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ciclofilina A/genética , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Ciclofilina A/deficiencia , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/patología , Humanos , Ratones , Ratones NoqueadosRESUMEN
Multiple schizophrenia (SCZ) risk loci may be involved in gene co-regulation mechanisms, and analysis of coexpressed gene networks may help to clarify SCZ molecular basis. We have previously identified a dopamine D2 receptor (DRD2) coexpression module enriched for SCZ risk genes and associated with cognitive and neuroimaging phenotypes of SCZ, as well as with response to treatment with antipsychotics. Here we aimed to identify regulatory factors modulating this coexpression module and their relevance to SCZ. We performed motif enrichment analysis to identify transcription factor (TF) binding sites in human promoters of genes coexpressed with DRD2. Then, we measured transcript levels of a group of these genes in primary mouse cortical neurons in basal conditions and upon overexpression and knockdown of predicted TFs. Finally, we analyzed expression levels of these TFs in dorsolateral prefrontal cortex (DLPFC) of SCZ patients. Our in silico analysis revealed enrichment for NURR1 and ERR1 binding sites. In neuronal cultures, the expression of genes either relevant to SCZ risk (Drd2, Gatad2a, Slc28a1, Cnr1) or indexing coexpression in our module (Btg4, Chit1, Osr1, Gpld1) was significantly modified by gain and loss of Nurr1 and Err1. Postmortem DLPFC expression data analysis showed decreased expression levels of NURR1 and ERR1 in patients with SCZ. For NURR1 such decreased expression is associated with treatment with antipsychotics. Our results show that NURR1 and ERR1 modulate the transcription of DRD2 coexpression partners and support the hypothesis that NURR1 is involved in the response to SCZ treatment.SIGNIFICANCE STATEMENT In the present study, we provide in silico and experimental evidence for a role of the TFs NURR1 and ERR1 in modulating the expression pattern of genes coexpressed with DRD2 in human DLPFC. Notably, genetic variations in these genes is associated with SCZ risk and behavioral and neuroimaging phenotypes of the disease, as well as with response to treatment. Furthermore, this study presents novel findings on a possible interplay between D2 receptor-mediated dopamine signaling involved in treatment with antipsychotics and the transcriptional regulation mechanisms exerted by NURR1. Our results suggest that coexpression and co-regulation mechanisms may help to explain some of the complex biology of genetic associations with SCZ.
Asunto(s)
Predisposición Genética a la Enfermedad , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Receptores de Dopamina D2/genética , Receptores de Estrógenos/genética , Esquizofrenia/genética , Animales , Simulación por Computador , Redes Reguladoras de Genes , Humanos , Ratones , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Regiones Promotoras Genéticas , Receptor Relacionado con Estrógeno ERRalfaRESUMEN
The gold standard for classification of neurodegenerative diseases is postmortem histopathology; however, the diagnostic odyssey of this case challenges such a clinicopathologic model. We evaluated a 60-year-old woman with a 7-year history of a progressive dystonia-ataxia syndrome with supranuclear gaze palsy, suspected to represent Niemann-Pick disease Type C. Postmortem evaluation unexpectedly demonstrated neurodegeneration with 4-repeat tau deposition in a distribution diagnostic of progressive supranuclear palsy (PSP). Whole-exome sequencing revealed a new heterozygous variant in TGM6, associated with spinocerebellar ataxia type 35 (SCA35). This novel TGM6 variant reduced transglutaminase activity in vitro, suggesting it was pathogenic. This case could be interpreted as expanding: (1) the PSP phenotype to include a spinocerebellar variant; (2) SCA35 as a tau proteinopathy; or (3) TGM6 as a novel genetic variant underlying a SCA35 phenotype with PSP pathology. None of these interpretations seem adequate. We instead hypothesize that impairment in the crosslinking of tau by the TGM6-encoded transglutaminase enzyme may compromise tau functionally and structurally, leading to its aggregation in a pattern currently classified as PSP. The lessons from this case study encourage a reassessment of our clinicopathology-based nosology.
Asunto(s)
Proteínas tau/genética , Femenino , Humanos , Persona de Mediana Edad , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Fenotipo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Transglutaminasas/genéticaRESUMEN
Alzheimer's disease (AD) is the most common cause of dementia. At the pre-symptomatic phase of the disease, the processing of the amyloid precursor protein (APP) produces toxic peptides, called amyloid-ß 1-42 (Aß 1-42). The downstream effects of Aß 1-42 production are not completely uncovered. Here, we report the involvement of transglutaminase 1 (TG1) in in vitro AD models of neuronal toxicity. TG1 was increased at late stages of the disease in the hippocampus of a mouse model of AD and in primary cortical neurons undergoing stress. Silencing of TGM1 gene was sufficient to prevent Aß-mediated neuronal death. Conversely, its overexpression enhanced cell death. TGM1 upregulation was mediated at the transcriptional level by an activator protein 1 (AP1) binding site that when mutated halted TGM1 promoter activation. These results indicate that TG1 acts downstream of Aß-toxicity, and that its stress-dependent increase makes it suitable for pharmacological intervention.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Muerte Celular/fisiología , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Transglutaminasas/metabolismo , Precursor de Proteína beta-Amiloide , Animales , Modelos Animales de Enfermedad , Hipocampo , RatonesRESUMEN
BACKGROUND: Mutations in TGM6 gene, encoding for transglutaminase 6 (TG6), have been implicated in the pathogenesis of spinocerebellar ataxia type 35 (SCA35), a rare autosomal dominant disease marked by cerebellar degeneration and characterized by postural instability, incoordination of gait, features of cerebellar dysfunction and pyramidal signs. CASE PRESENTATION: Here we report the case of an Italian patient with late-onset, slowly progressive cerebellar features, including gait ataxia, scanning speech and ocular dysmetria and pyramidal tract signs. Whole exome sequencing revealed the rare heterozygous c.1024C > T (p.R342W) variant of TGM6, located at a highly evolutionary conserved position and predicted as pathogenic by in silico tools. Expression of TG6-R342W mutant in HEK293T cells led to a significant reduction of transamidase activity compared to wild-type TG6. CONCLUSION: This finding extends SCA35 genetic landscape, highlighting the importance of TGM6 screening in undiagnosed late-onset and slowly progressive cerebellar ataxias.
Asunto(s)
Ataxias Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/diagnóstico , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Mutación , Transglutaminasas/genética , Transglutaminasas/metabolismoRESUMEN
Spinocerebellar ataxia type 35 (SCA35) is a rare autosomal-dominant neurodegenerative disease caused by mutations in the TGM6 gene, which codes for transglutaminase 6 (TG6). Mutations in TG6 induce cerebellar degeneration by an unknown mechanism. We identified seven patients bearing new mutations in TGM6. To gain insights into the molecular basis of mutant TG6-induced neurotoxicity, we analyzed all the seven new TG6 mutants and the five TG6 mutants previously linked to SCA35. We found that the wild-type (TG6-WT) protein mainly localized to the nucleus and perinuclear area, whereas five TG6 mutations showed nuclear depletion, increased accumulation in the perinuclear area, insolubility and loss of enzymatic function. Aberrant accumulation of these TG6 mutants in the perinuclear area led to activation of the unfolded protein response (UPR), suggesting that specific TG6 mutants elicit an endoplasmic reticulum stress response. Mutations associated with activation of the UPR caused death of primary neurons and reduced the survival of novel Drosophila melanogaster models of SCA35. These results indicate that mutations differently impacting on TG6 function cause neuronal dysfunction and death through diverse mechanisms and highlight the UPR as a potential therapeutic target for patient treatment.
Asunto(s)
Ataxias Espinocerebelosas/genética , Transglutaminasas/genética , Transglutaminasas/metabolismo , Respuesta de Proteína Desplegada/genética , Animales , Animales Modificados Genéticamente , Células COS , Línea Celular , Chlorocebus aethiops , Drosophila melanogaster , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Mutación , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/patología , Ataxias Espinocerebelosas/enzimología , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patologíaRESUMEN
PURPOSE OF REVIEW: Traumatic brain injury (TBI) is one of the leading causes of death in the developed world. Despite advances at the bedside, pharmacological interventions have yet to be successful likely because of the need for a better understanding of disease mechanisms as potential targets for intervention. Recent evidence implicates a family of enzymes, namely transglutaminases, in the pathological mechanisms of TBI. RECENT FINDINGS: Transglutaminases are multifunctional, calcium-dependent enzymes that are significantly upregulated in TBI. They are known for their transamidase activity that consists of the covalent crosslinking of glutamines and lysines. Recent data support their ability to aminylate proteins with primary amines such as polyamines or monoamines like serotonin and histamine and to regulate gene transcription. SUMMARY: In this review, we will discuss data that support a role for transglutaminases, in particular transglutaminase 2, in mitochondrial damage, excitotoxicity and inflammation and their relationship to the pathobiology of TBI. We will review past evidence and outline the need for new experiments that could clarify the role of these enzymes in cell injury and death associated with traumatic brain injury.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Muerte Celular , Inflamación , Regeneración Nerviosa , Neuronas , Transglutaminasas/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patologíaRESUMEN
Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1G93A mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1G93A mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1G93A mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also for sporadic ALS. This approach aims to address the neuroinflammatory reaction that is a major hallmark of ALS. However, given the complexity of the disease, a combination of therapeutic approaches may be necessary.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Ciclofilina A/metabolismo , Modelos Animales de Enfermedad , Líquido Extracelular/metabolismo , Mediadores de Inflamación/metabolismo , Adulto , Anciano , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Ciclofilina A/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos/métodos , Inhibidores Enzimáticos/administración & dosificación , Líquido Extracelular/efectos de los fármacos , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Tasa de Supervivencia/tendenciasRESUMEN
Oxidative stress is a widely recognized cause of cell death associated with neurodegeneration, inflammation, and aging. Tyrosine nitration in these conditions has been reported extensively, but whether tyrosine nitration is a marker or plays a role in the cell-death processes was unknown. Here, we show that nitration of a single tyrosine residue on a small proportion of 90-kDa heat-shock protein (Hsp90), is sufficient to induce motor neuron death by the P2X7 receptor-dependent activation of the Fas pathway. Nitrotyrosine at position 33 or 56 stimulates a toxic gain of function that turns Hsp90 into a toxic protein. Using an antibody that recognizes the nitrated Hsp90, we found immunoreactivity in motor neurons of patients with amyotrophic lateral sclerosis, in an animal model of amyotrophic lateral sclerosis, and after experimental spinal cord injury. Our findings reveal that cell death can be triggered by nitration of a single protein and highlight nitrated Hsp90 as a potential target for the development of effective therapies for a large number of pathologies.
Asunto(s)
Muerte Celular/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Ácido Peroxinitroso/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Tirosina/metabolismo , Receptor fas/metabolismoRESUMEN
Histone deacetylase (HDAC) inhibition improves function and extends survival in rodent models of a host of neurological conditions, including stroke, and neurodegenerative diseases. Our understanding, however, of the contribution of individual HDAC isoforms to neuronal death is limited. In this study, we used selective chemical probes to assess the individual roles of the Class I HDAC isoforms in protecting Mus musculus primary cortical neurons from oxidative death. We demonstrated that the selective HDAC8 inhibitor PCI-34051 is a potent neuroprotective agent; and by taking advantage of both pharmacological and genetic tools, we established that HDAC8 is not critically involved in PCI-34051's mechanism of action. We used BRD3811, an inactive ortholog of PCI-34051, and showed that, despite its inability to inhibit HDAC8, it exhibits robust neuroprotective properties. Furthermore, molecular deletion of HDAC8 proved insufficient to protect neurons from oxidative death, whereas both PCI-34051 and BRD3811 were able to protect neurons derived from HDAC8 knock-out mice. Finally, we designed and synthesized two new, orthogonal negative control compounds, BRD9715 and BRD8461, which lack the hydroxamic acid motif and showed that they stably penetrate cell membranes but are not neuroprotective. These results indicate that the protective effects of these hydroxamic acid-containing small molecules are likely unrelated to direct epigenetic regulation via HDAC inhibition, but rather due to their ability to bind metals. Our results suggest that hydroxamic acid-based HDAC inhibitors may mediate neuroprotection via HDAC-independent mechanisms and affirm the need for careful structure-activity relationship studies when using pharmacological approaches.
Asunto(s)
Corteza Cerebral/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Células Cultivadas , Corteza Cerebral/patología , Femenino , Ratones , Ratones Transgénicos , Neuronas/patología , EmbarazoRESUMEN
Amyotrophic lateral sclerosis is the most common motor neuron disease and is still incurable. The mechanisms leading to the selective motor neuron vulnerability are still not known. The interplay between motor neurons and astrocytes is crucial in the outcome of the disease. We show that mutant copper-zinc superoxide dismutase (SOD1) overexpression in primary astrocyte cultures is associated with decreased levels of proteins involved in secretory pathways. This is linked to a general reduction of total secreted proteins, except for specific enrichment in a number of proteins in the media, such as mutant SOD1 and valosin-containing protein (VCP)/p97. Because there was also an increase in exosome release, we can deduce that astrocytes expressing mutant SOD1 activate unconventional secretory pathways, possibly as a protective mechanism. This may help limit the formation of intracellular aggregates and overcome mutant SOD1 toxicity. We also found that astrocyte-derived exosomes efficiently transfer mutant SOD1 to spinal neurons and induce selective motor neuron death. We conclude that the expression of mutant SOD1 has a substantial impact on astrocyte protein secretion pathways, contributing to motor neuron pathology and disease spread.
Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Astrocitos/enzimología , Exosomas/enzimología , Neuronas Motoras/enzimología , Proteínas del Tejido Nervioso/metabolismo , Superóxido Dismutasa/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/genética , Exosomas/genética , Exosomas/patología , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Mutación , Proteínas del Tejido Nervioso/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Proteína que Contiene ValosinaRESUMEN
The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.
RESUMEN
Molecular deletion of transglutaminase 2 (TG2) has been shown to improve function and survival in a host of neurological conditions including stroke, Huntington's disease, and Parkinson's disease. However, unifying schemes by which these cross-linking or polyaminating enzymes participate broadly in neuronal death have yet to be presented. Unexpectedly, we found that in addition to TG2, TG1 gene expression level is significantly induced following stroke in vivo or due to oxidative stress in vitro. Forced expression of TG1 or TG2 proteins is sufficient to induce neuronal death in Rattus norvegicus cortical neurons in vitro. Accordingly, molecular deletion of TG2 alone is insufficient to protect Mus musculus neurons from oxidative death. By contrast, structurally diverse inhibitors used at concentrations that inhibit TG1 and TG2 simultaneously are neuroprotective. These small molecules inhibit increases in neuronal transamidating activity induced by oxidative stress; they also protect neurons downstream of pathological ERK activation when added well after the onset of the death stimulus. Together, these studies suggest that multiple TG isoforms, not only TG2, participate in oxidative stress-induced cell death signaling; and that isoform nonselective inhibitors of TG will be most efficacious in combating oxidative death in neurological disorders.
Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Neuronas/enzimología , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/fisiología , Transglutaminasas/antagonistas & inhibidores , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Proteínas de Unión al GTP/biosíntesis , Proteínas de Unión al GTP/deficiencia , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas , Ratas Sprague-Dawley , Transglutaminasas/biosíntesis , Transglutaminasas/deficienciaRESUMEN
Hypoxia-inducible factor (HIF) mediates a broad, conserved adaptive response to hypoxia, and the HIF pathway is a potential therapeutic target in cerebral ischemia. This study investigated the mechanism by which in vitro ischemia (oxygen-glucose deprivation; OGD) affects canonical hypoxic HIF-1α stabilization. We validated the use of a reporter containing the oxygen-dependent degradation domain of HIF-1α fused to firefly luciferase (ODD-luc) to monitor quantitatively distinct biochemical events leading to hypoxic HIF-1α expression or stabilization in a human neuroblastoma cell line (SH-SY5Y). When OGD was imposed following a 2-hr hypoxic stabilization of ODD-luc, the levels of the reporter were reduced, consistent with prior models proposing that OGD enhances HIF prolylhydroxylase (PHD) activity. Surprisingly, PHD inhibitors and proteasome inhibitors do not stabilize ODD-luc in OGD. Furthermore, OGD does not affect the half-life of ODD-luc protein following hypoxia, suggesting that OGD abrogates hypoxic HIF-1α induction by reducing HIF-1α synthesis rather than by enhancing its degradation. We observed ATP depletion under OGD vs. hypoxia and propose that ATP depletion enhances translational suppression, overcoming the selective synthesis of HIF concurrent with global decreases in protein synthesis in hypoxia. Taken together, these findings biochemically characterize a practical reporter for monitoring HIF-1α levels and support a novel model for HIF regulation in an in vitro model of human ischemia.
Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuronas/metabolismo , Hipoxia de la Célula , Línea Celular , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , ImmunoblottingRESUMEN
Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, still incurable. The disease is highly heterogenous both genetically and phenotypically. Therefore, developing efficacious treatments is challenging in many aspects because it is difficult to predict the rate of disease progression and stratify the patients to minimize statistical variability in clinical studies. Moreover, there is a lack of sensitive measures of therapeutic effect to assess whether a pharmacological intervention ameliorates the disease. There is also urgency of markers that reflect a molecular mechanism dysregulated by ALS pathology and can be rescued when a treatment relieves the condition. Here, we summarize and discuss biomarkers tested in multicentered studies and across different laboratories like neurofilaments, the most used marker in ALS clinical studies, neuroinflammatory-related proteins, p75ECD, p-Tau/t-Tau, and UCHL1. We also explore the applicability of muscle proteins and extracellular vesicles as potential biomarkers.
Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Pronóstico , Biomarcadores , Progresión de la EnfermedadRESUMEN
The clinical characteristics of SBMA, also known as Kennedy's disease (OMIM 313200), were initially documented by Dr. H Kawahara in the 18th century and a hundred years later by Dr. W. Kennedy. SBMA is a neuromuscular disease caused by expansions of a CAG microsatellite tandem repeat in exon 1 of the androgen receptor (AR) gene located on the X chromosome. These expansions result in the production of AR with an aberrantly expanded polyglutamine (polyQ) tract. In this review, we explore recent advancements in the significance of gene expression changes in skeletal muscle and discuss how pharmacological interventions targeting this aspect of disease pathogenesis can potentially be translated into therapies for SBMA patients.
Asunto(s)
Atrofia Bulboespinal Ligada al X , Humanos , Atrofia Bulboespinal Ligada al X/tratamiento farmacológico , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico , Músculo Esquelético/metabolismo , Atrofia MuscularRESUMEN
Spinobulbar muscular atrophy (SBMA) is caused by CAG expansions in the androgen receptor gene. Androgen binding to polyQ-expanded androgen receptor triggers SBMA through a combination of toxic gain-of-function and loss-of-function mechanisms. Leveraging cell lines, mice, and patient-derived specimens, we show that androgen receptor co-regulators lysine-specific demethylase 1 (LSD1) and protein arginine methyltransferase 6 (PRMT6) are overexpressed in an androgen-dependent manner specifically in the skeletal muscle of SBMA patients and mice. LSD1 and PRMT6 cooperatively and synergistically transactivate androgen receptor, and their effect is enhanced by expanded polyQ. Pharmacological and genetic silencing of LSD1 and PRMT6 attenuates polyQ-expanded androgen receptor transactivation in SBMA cells and suppresses toxicity in SBMA flies, and a preclinical approach based on miRNA-mediated silencing of LSD1 and PRMT6 attenuates disease manifestations in SBMA mice. These observations suggest that targeting overexpressed co-regulators can attenuate androgen receptor toxic gain-of-function without exacerbating loss-of-function, highlighting a potential therapeutic strategy for patients with SBMA.
Asunto(s)
Atrofia Bulboespinal Ligada al X , Dípteros , Trastornos Musculares Atróficos , Ratones , Animales , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Andrógenos , Mutación con Ganancia de Función , Fenotipo , Histona Demetilasas/genética , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/metabolismoRESUMEN
Spinal and bulbar muscular atrophy is caused by polyglutamine (polyQ) expansions in androgen receptor (AR), generating gain-of-function toxicity that may involve phosphorylation. Using cellular and animal models, we investigated what kinases and phosphatases target polyQ-expanded AR, whether polyQ expansions modify AR phosphorylation, and how this contributes to neurodegeneration. Mass spectrometry showed that polyQ expansions preserve native phosphorylation and increase phosphorylation at conserved sites controlling AR stability and transactivation. In small-molecule screening, we identified that CDC25/CDK2 signaling could enhance AR phosphorylation, and the calcium-sensitive phosphatase calcineurin had opposite effects. Pharmacologic and genetic manipulation of these kinases and phosphatases modified polyQ-expanded AR function and toxicity in cells, flies, and mice. Ablation of CDK2 reduced AR phosphorylation in the brainstem and restored expression of Myc and other genes involved in DNA damage, senescence, and apoptosis, indicating that the cell cycle-regulated kinase plays more than a bystander role in SBMA-vulnerable postmitotic cells.
Asunto(s)
Calcio , Receptores Androgénicos , Ratones , Animales , Receptores Androgénicos/química , Mutación con Ganancia de Función , Quinasas Ciclina-Dependientes/genética , Monoéster Fosfórico Hidrolasas/genéticaRESUMEN
Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.