Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Biol Inorg Chem ; 29(1): 159-168, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38182820

RESUMEN

Melanoma is the most aggressive and lethal type of skin cancer due to its characteristics such as high metastatic potential and low response rate to existing treatment modalities. In this way, new drug prototypes are being studied to solve the problem of treating patients with melanoma. Among these, ruthenium-based metallopharmaceuticals may be promising alternatives due to their antitumor characteristics and low systemic toxicity. In this context, the present study evaluated the antineoplastic effect of the ruthenium complex [Ru(mtz)(dppe)2]PF6-2-mercaptothiazoline-di-1,2-bis(diphenylphosphine) ethaneruthenium(II), namely RuMTZ, on human melanoma (A-375) and murine (B16-F10) cells, considering different approaches. Through XTT colorimetric and clonogenic efficiency assays, the complex revealed the selective cytotoxic activity, with the lowest IC50 (0.4 µM) observed for A375 cells. RuMTZ also induced changes in cell morphology, increased cell population in the sub-G0 phase and inhibiting cell migration. The levels of γH2AX and cleaved caspase 3 proteins were increased in both cell lines treated with RuMTZ. These findings indicated that the cytotoxic activity of RuMTZ on melanoma cells is related, at least in part, to the induction of DNA damage and apoptosis. Therefore, RuMTZ exhibited promising antineoplastic activity against melanoma cells.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Melanoma , Rutenio , Tiazolidinas , Humanos , Animales , Ratones , Rutenio/farmacología , Complejos de Coordinación/farmacología , Melanoma/tratamiento farmacológico , Ligandos , Antineoplásicos/farmacología , Apoptosis , Daño del ADN , Línea Celular Tumoral
2.
Molecules ; 29(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792223

RESUMEN

We present a Raman spectroscopy study of the vibrational properties of free-base meso-tetra(4-pyridyl) porphyrin polycrystals under various temperature and hydrostatic pressure conditions. The combination of experimental results and Density Functional Theory (DFT) calculations allows us to assign most of the observed Raman bands. The modifications in the Raman spectra when excited with 488 nm and 532 nm laser lights indicate that a resonance effect in the Qy band is taking place. The pressure-dependent results show that the resonance conditions change with increasing pressure, probably due to the shift of the electronic transitions. The temperature-dependent results show that the relative intensities of the Raman modes change at low temperatures, while no frequency shifts are observed. The experimental and theoretical analysis presented here suggest that these molecules are well represented by the C2v point symmetry group.

3.
Magn Reson Chem ; 58(10): 917-920, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32562503

RESUMEN

We report the catalytic activity for the complexes-cis-[RuCl2 (dppb)(bipy)] (A), and [η6 -(p-cymene)Ru (dppb)Cl]PF6 (B), wherein dppb = 1,4-bis(diphenylphosphine)butane, and bipy = 2,2'-bipyridine-for the synthesis of CDCl3 from CHCl3 using D2 O as deuterium source. H/D exchange reactions were performed using a chloroform/D2 O, 1:2 molar ratio, vigorously stirred, at room temperature. One mole of KOH was dissolved in D2 O fraction and catalytic complexes from 0.002 to 0.05 mmol were dissolved in chloroform. The H/D exchange reactions were monitored using 13 C nuclear magnetic resonance sequences without proton decoupling. The reaction using 0.01 mmol of compound A reached approximately 55% of H/D conversion in 1 h. In the same time, the reactions with 0.002 mmol of compound A and without catalyst show approximately 28% and 3% H/D exchange, respectively. Without the catalysts, the H/D exchange was only 12.0% in 5 h. For compound B, 55% H/D conversion was observed in 1 h, only when 0.05 mmol was used, which is much higher catalyst concentration. After the isolation of the chloroform fraction and two more addition of D2 O, it was possible to obtain 95.0% H/D exchange in approximately 3 h, using 0.01 mmol of the compound A. Therefore, compound A is an efficient catalyst for a rapid and straightforward synthesis of CDCl3 from CHCl3 at room temperature and using D2 O as deuterium source.

4.
Bioorg Chem ; 85: 455-468, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776556

RESUMEN

This study describes a series of newly synthesized phosphine/diimine ruthenium complexes containing the lawsone as bioligand with enhanced cytotoxicity against different cancer cells, and apoptosis induction in prostatic cancer cells DU-145. The complexes [Ru(law)(N-N)2]PF6 where N-N is 2,2'-bipyridine (1) or 1,10-phenanthroline (2) and [Ru(law)(dppm)(N-N)]PF6, where dppm means bis(diphenylphosphino)methane, N-N is 2,2'-bipyridine (3) or 1,10-phenanthroline (4), and law is lawsone, were synthesized and fully characterized by elemental analysis, molar conductivity, NMR, UV-vis, IR spectroscopies and cyclic voltammetry. The interaction of the complexes (1-4) with DNA was evaluated by circular dichroism, gel electrophoresis, and fluorescence, and the complexes presented interactions by the minor grooves DNA. The phosphinic series of complexes exhibited a remarkably broad spectrum of anticancer activity with approximately 34-fold higher than cisplatin and 5-fold higher than doxorubicin, inhibiting the growth of 3D tumor spheroids and the ability to retain the colony survival of DU-145 cells. Also, the complex (4) inhibits DU-145 cell adhesion and migration potential indicating antimetastatic properties. The mechanism of its anticancer activity was found to be related to increased reactive oxygen species (ROS) generation, increased the BAX/BCL-2 ratio and subsequent apoptosis induction. Overall, these findings suggested that the complex (4) could be a promising candidate for further evaluation as a chemotherapeutic agent in the prostate cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Naftoquinonas/farmacología , Esferoides Celulares/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Bovinos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , ADN/metabolismo , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/metabolismo , Sustancias Intercalantes/farmacología , Masculino , Naftoquinonas/síntesis química , Naftoquinonas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Rutenio/química
5.
Arch Biochem Biophys ; 660: 156-167, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389443

RESUMEN

This paper describes on the interaction studies of carbonyl heterobimetallic compounds of Ru(II)/Fe(II) containing polypyridyl ligands, with general formula ct-[RuCl(CO)(N-N)(dppf)]PF6, N-N = 1,10-phenanthroline (phen) 5; dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) 6; dipyrido[3,2-a:2',3'-c]phenazine (dppz) 7; dipyrido[3,2-f:2',3'-h]quinoxalino[2,3-b]quinoxaline (dpqQX) 8 and dppf = 1,1'-bis(diphenylphosphino) ferrocene], with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA). Also, it describes the cellular viability assays of these complexes in tumorigenic and non-tumorigenic cell lines. The carbonyl complexes 5-8 and their respective precursors with formula cis-[RuCl2(N-N)(dppf)], N-N = phen (1), dpq (2), dppz (3) and dpqQX (4), were characterized by elemental analysis and spectroscopic techniques (FTIR, UV-vis, 1H and 31P{1H} NMR). Also, a cyclic voltammetry study was performed for all complexes. The crystal structure of the complex 3 is presented and discussed. Spectrofluorimetric titrations shows spontaneous and strong interaction of 5-8 with BSA, through a static quenching mechanism, resulting in binding constants in the order of 104-106 L mol-1, at 310 K. Viscosity measurements and circular dichroism spectra prompts interactions of 5-8 with ct-DNA via non-classical intercalations or by an electrostatic pathway. MTT assays in breast tumor cells MDA-MB-231 and in non-tumorigenic cells MCF-10A and V79-4 cell lines revealed IC50 values ranging from 0.19 to 1.11 µmol L-1, 1.07-3.18 µmol L-1 and 1.29-3.85 µmol L-1 respectively, for complexes 5-8.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Hierro/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Piridinas/química , Rutenio/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Cricetinae , ADN/metabolismo , Humanos , Ligandos , Células MCF-7 , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo , Albúmina Sérica Bovina/metabolismo
6.
Int J Mol Sci ; 19(6)2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848969

RESUMEN

Ruthenium-based compounds represent a class of potential antineoplastic drugs. Recently, we designed, synthesized, and identified the Ru(II)-thymine complex [Ru(PPh3)2(Thy)(bipy)]PF6 (where PPh = triphenylphosphine, Thy = thymine and bipy = 2,2'-bipyridine) as a potent cytotoxic agent with the ability to bind to DNA and human and bovine serum albumins. In this study, the underlying cytotoxic mechanism of the [Ru(PPh3)2(Thy)(bipy)]PF6 complex was assessed. This complex displayed potent cytotoxicity in different cancer cell lines; the morphology that is associated with apoptotic cell death, increased internucleosomal DNA fragmentation without cell membrane permeability, loss of the mitochondrial transmembrane potential, increased phosphatidylserine externalization, and caspase-3 activation were observed in human promyelocytic leukemia HL-60 cells that were treated with the complex. Moreover, pretreatment of HL-60 cells with Z-VAD(OMe)-FMK, a pan-caspase inhibitor, partially reduced the apoptosis that was induced by the complex, indicating that the apoptotic cell death occurred through a caspase-mediated pathway. In conclusion, the [Ru(PPh3)2(Thy)(bipy)]PF6 complex displays potent cytotoxicity to different cancer cells and induces caspase-mediated apoptosis in HL-60 cells.


Asunto(s)
Caspasas/metabolismo , Compuestos de Rutenio/química , Compuestos de Rutenio/farmacología , Timina/química , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Inhibidores de Caspasas/química , Inhibidores de Caspasas/farmacología , Bovinos , Fragmentación del ADN/efectos de los fármacos , Células HL-60 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
7.
Tumour Biol ; 39(10): 1010428317695933, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29019283

RESUMEN

Peritoneal carcinomatosis is considered as a potentially lethal clinical condition, and the therapeutic options are limited. The antitumor effectiveness of the [Ru(l-Met)(bipy)(dppb)]PF6(1) and the [Ru(l-Trp)(bipy)(dppb)]PF6(2) complexes were evaluated in the peritoneal carcinomatosis model, Ehrlich ascites carcinoma-bearing Swiss mice. This is the first study that evaluated the effect of Ru(II)/amino acid complexes for antitumor activity in vivo. Complexes 1 and 2 (2 and 6 mg kg-1) showed tumor growth inhibition ranging from moderate to high. The mean survival time of animal groups treated with complexes 1 and 2 was higher than in the negative and vehicle control groups. The induction of Ehrlich ascites carcinoma in mice led to alterations in hematological and biochemical parameters, and not the treatment with complexes 1 and 2. The treatment of Ehrlich ascites carcinoma-bearing mice with complexes 1 and 2 increased the number of Annexin V positive cells and cleaved caspase-3 levels and induced changes in the cell morphology and in the cell cycle phases by induction of sub-G1 and G0/G1 cell cycle arrest. In addition, these complexes reduce angiogenesis induced by Ehrlich ascites carcinoma cells in chick embryo chorioallantoic membrane model. The treatment with the LAT1 inhibitor decreased the sensitivity of the Ehrlich ascites carcinoma cells to complexes 1 and 2 in vitro-which suggests that the LAT1 could be related to the mechanism of action of amino acid/ruthenium(II) complexes, consequently decreasing the glucose uptake. Therefore, these complexes could be used to reduce tumor growth and increase mean survival time with less toxicity than cisplatin. Besides, these complexes induce apoptosis by combination of different mechanism of action.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Ehrlich/patología , Neoplasias Peritoneales/patología , Compuestos de Rutenio/farmacología , Aminoácidos/farmacología , Animales , Western Blotting , Ratones
8.
Arch Biochem Biophys ; 636: 28-41, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29107586

RESUMEN

Three ruthenium/iron-based compounds, 1: [Ru(MIm)(bipy)(dppf)]PF6 (MIm = 2-mercapto-1-methylimidazole anion), 2: [RuCl(Im)(bipy)(dppf)]PF6 (Im = imidazole), and 3: [Ru(tzdt)(bipy)(dppf)]PF6 (tzdt = 1,3-thiazolidine-2-thione anion) (dppf = 1,1'-bis(diphenylphosphine)ferrocene and bipy = 2,2'-bipyridine), were synthesized, and characterized by elemental analyses, conductivity, UV/Vis, IR, 1H, 13C and 31P{1H} NMR spectroscopies, and by electrochemical technique. The complex 3 was also characterized by single-crystal X-ray. The three ruthenium(II) complexes show cytotoxicity against DU-145 (prostate carcinoma cells) and A549 (lung carcinoma cells) tumor cells. The free ligands do not exhibit any cytotoxic activity, such as evident by the IC50 values higher than 200 µM. UV/Vis and viscosity experiments showed that the complexes interact weakly with the DNA molecule, via electrostatic forces. The interaction of the complexes 1-3 with the HSA is moderate, with Kb values in range of 105-107 M-1, presenting a static mechanism of interaction stabilized by hydrophobic. Complexes 2 and 3 showed high affinity for the FA7 HSA site as evidenced by fluorescence spectroscopy and molecular docking. Complexes 1-3 were tested as potential human Topoisomerase IB inhibitors by analysing the different steps of the enzyme catalytic cycle. The results indicate that all compounds efficiently inhibit the DNA relaxation and the cleavage reaction, in which the effect increases upon pre-incubation. Complexes 1 and 2 are also able to slow down the religation reaction.


Asunto(s)
Complejos de Coordinación , ADN-Topoisomerasas de Tipo I/metabolismo , ADN/metabolismo , Hierro , Rutenio , Inhibidores de Topoisomerasa I , Células A549 , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Citotoxinas/síntesis química , Citotoxinas/química , Citotoxinas/farmacología , ADN/química , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , Humanos , Hierro/química , Hierro/farmacología , Rutenio/química , Rutenio/farmacología , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología
9.
Inorg Chem ; 56(7): 3781-3793, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28290674

RESUMEN

A series of copper(I)-phosphine polypyridyl complexes have been investigated as potential antitumor agents. The complexes [Cu(PPh3)2dpq]NO3 (2), [Cu(PPh3)2dppz]NO3 (3), [Cu(PPh3)2dppa]NO3 (4), and [Cu(PPh3)2dppme]NO3 (5) were synthesized by the reaction of [Cu(PPh3)2NO3] with the respective planar ligand under mild conditions. These copper complexes were fully characterized by elemental analysis, molar conductivity, FAB-MS, and NMR, UV-vis, and IR spectroscopies. Interactions between these copper(I)-phosphine polypyridyl complexes and DNA have been investigated using various spectroscopic techniques and analytical methods, such as UV-vis titrations, thermal denaturation, circular dichroism, viscosity measurements, gel electrophoresis, and competitive fluorescent intercalator displacement assays. The results of our studies suggest that these copper(I) complexes interact with DNA in an intercalative way. Furthermore, their high protein binding affinities toward human serum albumin were determined by fluorescence studies. Additionally, cytotoxicity analyses of all complexes against several tumor cell lines (human breast, MCF-7; human lung, A549; and human prostate, DU-145) and non-tumor cell lines (Chinese hamster lung, V79-4; and human lung, MRC-5) were performed. The results revealed that copper(I)-phosphine polypyridyl complexes are more cytotoxic than the corresponding planar ligand and also showed to be more active than cisplatin. A good correlation was observed between the cytostatic activity and lipophilicity of the copper(I) complexes studied here.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Cobre/química , ADN/química , Albúmina Sérica/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Cisplatino/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cricetulus , Ensayo de Cambio de Movilidad Electroforética , Fluorescencia , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Ligandos , Fosfinas/síntesis química , Fosfinas/química , Fosfinas/farmacología , Plásmidos/química , Piridinas/síntesis química , Piridinas/química , Piridinas/farmacología , Temperatura de Transición
10.
Biometals ; 30(2): 295-305, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28258507

RESUMEN

Novel metal complexes have received great attention in the last decades due to their potential anticancer activity. Notably, ruthenium-based complexes have emerged as good alternative to the currently used platinum-based drugs for cancer therapy, providing less toxicity and side effects to patients. Glioblastoma is an aggressive and invasive type of brain tumor and despite of advances is the field of neurooncology there is no effective treatment until now. Therefore, we sought to investigate the potential antiproliferative activity of phosphine-ruthenium-based complexes on human glioblastoma cell lines. Due to its octahedral structure as opposed to the square-planar geometry of platinum(II) compounds, ruthenium(II) complexes exhibit different structure-function relationship probably acting through a different mechanism from that of cisplatin beyond their ability to bind DNA. To better improve the pharmacological activity of metal complexes we hypothesized that neutron activation of ruthenium in the complexes would allow to decrease the effective concentration of the compound needed to kill tumor cells. Herein we report on the effect of unmodified and neutron activated phosphine ruthenium II complexes on glioblastoma cell lines carrying wild-type and mutated p53 tumor suppressor gene. Induction of apoptosis/authophagy as well as generation of reactive oxygen species were determined. The phosphine ruthenium II complexes tested were highly active against glioblastoma cell lines inducing cell death both through apoptosis and autophagy in a p53 independent fashion. Neutron activation of ruthenium compounds rendered them more active than their original counterparts suggesting a new strategy to improve the antitumor activity of these compounds.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Neuroglía/efectos de los fármacos , Neutrones , Fosfinas/farmacología , Compuestos de Rutenio/farmacología , Antineoplásicos/efectos de la radiación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Complejos de Coordinación/efectos de la radiación , Expresión Génica , Humanos , Mutación , Neuroglía/metabolismo , Neuroglía/patología , Fosfinas/efectos de la radiación , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Rutenio/efectos de la radiación , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Molecules ; 19(5): 5999-6008, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24818578

RESUMEN

Tuberculosis is an ancient disease that is still present as a global public health problem. Our group has been investigating new molecules with anti-TB activity. In this context, inorganic chemistry has been a quite promising source of such molecules, with excellent results seen with ruthenium compounds. Nanostructured lipid systems may potentiate the action of drugs by reducing the required dosage and side effects and improving the antimicrobial effects. The aim of this study was to develop a nanostructured lipid system and then characterize and apply these encapsulated compounds (SCARs 1, 2 and 4) with the goal of improving their activity by decreasing the Minimum Inhibitory Concentration (MIC90) and reducing the cytotoxicity (IC50). The nanostructured system was composed of 10% phase oil (cholesterol), 10% surfactant (soy oleate, soy phosphatidylcholine and Eumulgin®) and 80% aqueous phase (phosphate buffer pH = 7.4). Good activity against Mycobacterium tuberculosis was maintained after the incorporation of the compounds into the nanostructured lipid system, while the cytotoxicity decreased dramatically, in some cases up to 20 times less toxic than the unencapsulated drug.


Asunto(s)
Lípidos/administración & dosificación , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Humanos , Lípidos/química , Pruebas de Sensibilidad Microbiana , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Rutenio/administración & dosificación , Rutenio/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-37282638

RESUMEN

BACKGROUND: Ruthenium complexes have shown promise in treating many cancers, including breast cancer. Previous studies of our group have demonstrated the potential of the trans-[Ru(PPh3)2(N,N-dimethylN'-thiophenylthioureato-k2O,S)(bipy)]PF6 complex, the Ru(ThySMet), in the treatment of breast tumor cancers, both in 2D and 3D culture systems. Additionally, this complex presented low toxicity when tested in vivo. AIMS: Improve the Ru(ThySMet) activity by incorporating the complex into a microemulsion (ME) and testing its in vitro effects. METHODS: The ME-incorporated Ru(ThySMet) complex, Ru(ThySMet)ME, was tested for its biological effects in two- (2D) and three-dimensional (3D) cultures using different types of breast cells, MDA-MB-231, MCF-10A, 4T1.13ch5T1 and Balb/C 3T3 fibroblasts. RESULTS: An increased selective cytotoxicity of the Ru(ThySMet)ME for tumor cells was found in 2D cell culture, compared with the original complex. This novel compound also changed the shape of tumor cells and inhibited cell migration with more specificity. Additional 3D cell culture tests using the non-neoplastic S1 and the triple-negative invasive T4-2 breast cells have shown that Ru(ThySMet)ME presented increased selective cytotoxicity for tumor cells compared with the 2D results. The morphology assay performed in 3D also revealed its ability to reduce the size of the 3D structures and increase the circularity in T4-2 cells. CONCLUSION: These results demonstrate that the Ru(ThySMet)ME is a promising strategy to increase its solubility, delivery, and bioaccumulation in target breast tumors.

13.
J Inorg Biochem ; 248: 112345, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562318

RESUMEN

Two cobalt(III) complexes containing different ß-ketoesters, namely [CoIII(L1)(py2en)](ClO4)2·H2O (1) and [CoIII(L2)(py2en)](ClO4)2 (2) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine; L1- = methylacetoacetate; L2- = ethyl 4-chloroacetoacetate) have been prepared and investigated as prototypes of bioreductive prodrugs. The presence of ß-ketoester and py2en ligands in 1 and 2, as well as the perchlorate counterions, was supported by IR spectroscopy and CHN elemental analysis. The composition molecular structure of both complexes was confirmed by NMR spectroscopy and ESI mass spectrometry. Structural information was also obtained for 2via X-ray diffraction analysis. The redox properties indicate that 1 and 2 are suitable for reduction under biological conditions. Investigation of DNA-interacting suggest that 1 and 2 bind DNA via electrostatic forces. Both complexes may be employed as possible platforms for the delivery of biologically active compounds, since their reaction with ascorbic acid in PBS at pH 6.2 and 7.4 at 37°C results in the release of the ß-ketoester ligands upon Co(III)/Co(II) reduction.


Asunto(s)
Cobalto , Profármacos , Cobalto/química , Ligandos , Estructura Molecular , Profármacos/química , Cristalografía por Rayos X
14.
J Inorg Biochem ; 237: 112005, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36155170

RESUMEN

For the first time, we herein report on the syntheses of two new Ru(II)/bipyridine/phenanthroline complexes containing lapachol as ligand: complex (1), [Ru (bipy)2(Lap)]PF6 and complex (2), [Ru(Lap)(phen)2]PF6, where bipy = 2,2'-bipyridine and ph en = 1,10-phenanthroline; Lap = lapachol (2-hydroxy-3-(3-methylbut-2-en-1- yl)naphthalene-1,4-dione). The complexes were synthesized and characterized by elemental analyses, molar conductivity, mass spectrometry, ultraviolet-visible and infrared spectroscopies, nuclear magnetic resonance (1H, 13C), and single crystal X-ray diffraction, for complex (2). In addition, in vitro cytotoxicity was tested against six cancer cells: A549 (lung carcinoma); DU-145 (human prostate carcinoma); HepG2 (human hepatocellular carcinoma), PC-3 (human prostate adenocarcinoma); MDA-MB-231 (human breast adenocarcinoma); Caco-2 (human colorectal adenocarcinoma), and against two non-cancer cells, FGH (human gingival normal fibroblasts) and PNT-2 (prostate epithelial cells). Complex (1) was slightly more toxic and selective than complex (2) for all cell lines, except against the A549 cells, where (2) was more potent than complex (1). The complexes induced an increase in the reactive oxygen species, and the co-treatment with N-acetyl-L-cysteine remarkably suppressed the ROS generation and prevented the reduction of cell viability, suggesting that the cytotoxicity of the complexes is related to the ROS-mediated pathway. Further studies indicated that the complexes may bind to DNA via minor groove interaction. Our studies also revealed that free Lap induces gene mutations in Salmonella Typhimurium, nevertheless, the complexes demonstrated the absence of genotoxicity by the Ames test. The present study provides a relevant contribution to understanding the anti-cancer potential and genetic toxicological events of new ruthenium complexes containing the lapachol molecule as a ligand.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Carcinoma , Complejos de Coordinación , Rutenio , Masculino , Humanos , Fenantrolinas , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Especies Reactivas de Oxígeno/metabolismo , Ligandos , Células CACO-2 , Rutenio/química , Antineoplásicos/química , Línea Celular Tumoral
15.
J Inorg Biochem ; 222: 111497, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090039

RESUMEN

The use of natural products as potential ligands has been explored as a strategy in the development of metal-based chemotherapy. Since ruthenium complexes are promising alternatives to traditional antitumor agents, this study evaluated the anti-melanoma potential of two ruthenium(II) complexes containing the naphthoquinone ligands lapachol (lap), [Ru(lap)(dppm)2]PF6, and lawsone (law), [Ru(law)(dppm)2]PF6, in addition to the bis(diphenylphosphino)methane (dppm) ligand, referred to as complexes (1) and (2), respectively, using a syngeneic murine melanoma model. Activation of the apoptotic pathway by the treatments was assessed by immunohistochemistry in tumor tissue. Additionally, toxicity of the treatments was evaluated by variation in body and organ weight, quantification of biochemical indicators of renal damage, and genotoxicity in bone marrow and hepatocytes. First, the antiproliferative activity of (1) and (2) was observed in B16F10 cells, with IC50 values of 2.78 and 1.68 µM, respectively. The results obtained in mice showed that, unlike complex (1), (2) possesses significant anti-melanoma activity demonstrated by a reduction in tumor volume and mass (88.42%), as well as in mitosis frequency (83.86%). Additionally, complex (2) increased the levels of cleaved caspase-3, inducing tumor cell apoptosis. When compared to the metallodrug cisplatin, complex (2) exhibited similar anti-melanoma activity and lower toxicity considering all parameters evaluated. In silico studies demonstrated no difference in the binding energy of the naphthoquinone complex between complexes (1) and (2). However, the complex containing the lawsone ligand has a lower molar volume, which may be important for interactions with minor DNA grooves. The present results demonstrate the antitumor efficiency of complex (2) and a significantly lower systemic toxicity compared to cisplatin.


Asunto(s)
Antineoplásicos/uso terapéutico , Complejos de Coordinación/uso terapéutico , Melanoma/tratamiento farmacológico , Naftoquinonas/uso terapéutico , Fosfinas/uso terapéutico , Animales , Antineoplásicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/toxicidad , Ligandos , Masculino , Ratones Endogámicos C57BL , Naftoquinonas/toxicidad , Fosfinas/toxicidad , Rutenio/química , Rutenio/toxicidad
16.
Biol Trace Elem Res ; 197(1): 123-131, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31773484

RESUMEN

Ruthenium is attracting considerable interest as the basis for new compounds to treat diseases, and studies have shown that complexes with different structures have significant antineoplastic and antimetastatic potential against several types of tumors, including tumors resistant to cisplatin drugs. We examined the cytotoxic, genotoxic, and pro-apoptotic activities of six ruthenium complexes containing amino acid with general formulation [Ru(AA)(bipy)(dppb)]PF6, where AA = amino acid (alanine, glycine, leucine, lysine, methionine, or tryptophan); bipy = 2,2´-bipyridine; and dppb = [1,4-bis(diphenylphosphine)butane], against A549 (lung carcinoma) and K562 (chronic myelogenous leukemia) cancer cells. The results show that the ruthenium complexes tested were able to induce cytotoxicity in A549 and K562 cancer cells. Complex 1 containing alanine inhibited the cell viability of A549 and K562 tumor cells by inducing apoptosis, as evidenced by an increased number of Annexin V-positive cells and the induction of DNA damage and cell cycle arrest. Complex 1 was able to induce caspase-mediated apoptosis in K562 cells through the mitochondrial dysfunction, the upregulation of apoptotic genes, and the downregulation of Bcl2 anti-apoptotic gene. Besides being cytotoxic to K562 and A549 cells, ruthenium complex containing alanine shows low cytotoxicity and genotoxicity against non-tumor cells. These results suggest that the ruthenium (II) complex is a potential safe and efficient antineoplastic candidate for leukemia treatment.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Leucemia , Rutenio , Aminoácidos , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Humanos , Rutenio/farmacología
17.
Biol Trace Elem Res ; 198(2): 669-680, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32266641

RESUMEN

Ruthenium(II)/benzonitrile complexes have demonstrated promising anticancer properties. Considering that there are no specific therapies for treating sarcoma, we decided to evaluate the cytotoxic, genotoxic, and lethal effects of cis-[RuCl(BzCN)(phen)(dppb)]PF6 (BzCN = benzonitrile; phen = 1,10-phenanthroline; dppb = 1,4-bis-(diphenylphosphino)butane), as well as the mechanism of cell death induction that occurs against murine sarcoma-180 tumor. Thus, MTT assay was applied to assess the ruthenium cytotoxicity, showing that the compound is a more potent inhibitor for the sarcoma-180 tumor cell viability than normal cells (lymphocytes). The comet assay indicated low genotoxic for normal cells. cis-[RuCl(BzCN)(phen)(dppb)]PF6 also showed moderate lethality in Artemia salina. The complex induced cell cycle arrest in the G0/G1 phase in sarcoma-180 cells. In addition, the complex caused S180 cells to die by apoptosis by an increase in Annexin-V-positive cells and morphological changes typical of apoptotic cells. Additionally, cis-[RuCl(BzCN)(phen)(dppb)]PF6 increased the gene expression of Bax, Casp3, and Tp53 in S180 cells. By using a western blot, we observed an increased protein level of TNF-R2, Bax, and p21. In conclusion, cis-[RuCl(BzCN)(phen)(dppb)]PF6 is active and selective for sarcoma-180 cells, leading to cell cycle arrest at the G0/G1 and cell death through a caspases-mediated and Tp53/p21-mediated pathway.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Sarcoma , Animales , Antineoplásicos/farmacología , Apoptosis , Artemia , Caspasas , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ratones , Nitrilos , Rutenio/farmacología , Sarcoma/tratamiento farmacológico , Proteína p53 Supresora de Tumor
18.
Toxicol In Vitro ; 62: 104679, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31676337

RESUMEN

Ruthenium complexes are being considered as novel chemotherapeutic alternatives for cancer treatment. In our study, we assessed the antitumoral activities of novel ruthenium complexes coupled to the amino acids proline (RuPro) and threonine (RuThr) in prostate tumor cell lines (DU145) and breast (MCF7), and normal cell lines of the lung fibroblast (GM07492A). Our results revealed that the EC50 of the complexes for DU145 and MCF7 was two times lower than that GM07492A. Moreover, RuPro and RuThr were not able to induce significant genomic instability, cell cycle arrest or cell death in GM07492A, but could induce DNA damage, arrest in G2/M and apoptosis in DU145 and MCF7. Furthermore, BAX, TP53 and ATM were found to be upregulated in DU145 and MCF7 treated with RuPro and RuThr, in which, a higher ASCT2 gene expression was also observed. Using molecular docking, RuPro and RuThr interact with ASCT2, suggesting that this transporter might have a pivotal role in the execution of their activities. Hence, our results with RuPro and RuThr are capable of selectively inducing genetic damage, cell cycle arrest and apoptosis in DU145 and MCF7. We suggest that the selective action of the RuPro and RuThr complexes is related to the higher expression of ASCT2 in the tumor cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quelantes/farmacología , Inestabilidad Genómica/efectos de los fármacos , Prolina/química , Neoplasias de la Próstata/tratamiento farmacológico , Compuestos de Rutenio/farmacología , Treonina/química , Sistema de Transporte de Aminoácidos ASC/efectos de los fármacos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Ligandos , Masculino , Antígenos de Histocompatibilidad Menor/efectos de los fármacos , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/patología
19.
Chem Commun (Camb) ; 56(95): 15024-15027, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33185643

RESUMEN

Here we discovered an unprecedented giant octahedral coordination compound bearing 16 Zn2+, 12 Na+, 8 O2-, 4 OH-, 13 H2O and 6 L4- ligands [L4- = fully deprotonated tetra(carboxymethoxy)calix[4]arene]. Its structure was elucidated by single-crystal X-ray diffraction, wavelength-dispersive X-ray spectroscopy and MALDI-TOF mass spectrometry. This compound, Zn8Na6L6⊃Zn8Na6O8(OH)4(H2O)13 (external⊃internal), has eight tetrahedral zinc ions forming the coordination vertices of an outermost cube where carboxylate groups from the sodium calixarenes are anchored. Its core consists of eight Zn2+, six Na+, eight O2-, and four OH- distributed over three layers, besides thirteen coordinated H2O molecules.

20.
Front Chem ; 7: 762, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781544

RESUMEN

Lawsone itself exhibits interesting biological activities, and its complexation with a metal center can improve the potency. In this context a cytotoxic Ru-complex, [Ru(law)(dppb)(bipy)] (law = lawsone, dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2'-bipyridine), named as CBLAU, was prepared as reported. In this work, NMR binding-target studies were performed to bring to light the most accessible interaction sites of this Ru-complex toward Calf-Thymus DNA (CT-DNA, used as a model), in a similar approach used for other metallic complexes with anti-cancer activity, such as cisplatin and carboplatin. Advanced and robust NMR binding-target studies, among them Saturation Transfer Difference (STD)-NMR and longitudinal relaxometry (T1), were explored. The 1H and 31P -NMR data indicate that the structure of Ru-complex remains preserved in the presence of CT-DNA, and some linewidth broadening is also observed for all the signals, pointing out some interaction. Looking at the binding efficiency, the T1 values are highly influenced by the formation of the CBLAU-DNA adduct, decreasing from 11.4 s (without DNA) to 1.4 s (with DNA), where the difference is bigger for the lawsone protons. Besides, the STD-NMR titration experiments revealed a stronger interaction (KD = 5.9 mM) for CBLAU-DNA in comparison to non-complexed lawsone-DNA (KD = 34.0 mM). The epitope map, obtained by STD-NMR, shows that aromatic protons from the complexed lawsone exhibits higher saturation transfer, in comparison to other Ru-ligands (DPPB and bipy), suggesting the supramolecular contact with CT-DNA takes place by the lawsone face of the Ru-complex, possibly by a spatial π-π stacking involving π-bonds on nucleic acids segments of the DNA chain and the naphthoquinone group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA