Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(12): 3109-3124.e22, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34004145

RESUMEN

Glycans modify lipids and proteins to mediate inter- and intramolecular interactions across all domains of life. RNA is not thought to be a major target of glycosylation. Here, we challenge this view with evidence that mammals use RNA as a third scaffold for glycosylation. Using a battery of chemical and biochemical approaches, we found that conserved small noncoding RNAs bear sialylated glycans. These "glycoRNAs" were present in multiple cell types and mammalian species, in cultured cells, and in vivo. GlycoRNA assembly depends on canonical N-glycan biosynthetic machinery and results in structures enriched in sialic acid and fucose. Analysis of living cells revealed that the majority of glycoRNAs were present on the cell surface and can interact with anti-dsRNA antibodies and members of the Siglec receptor family. Collectively, these findings suggest the existence of a direct interface between RNA biology and glycobiology, and an expanded role for RNA in extracellular biology.


Asunto(s)
Membrana Celular/metabolismo , Polisacáridos/metabolismo , ARN/metabolismo , Animales , Anticuerpos/metabolismo , Secuencia de Bases , Vías Biosintéticas , Línea Celular , Supervivencia Celular , Humanos , Espectrometría de Masas , Ácido N-Acetilneuramínico/metabolismo , Poliadenilación , Polisacáridos/química , ARN/química , ARN/genética , ARN no Traducido/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Coloración y Etiquetado
2.
Cell ; 174(1): 218-230.e13, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29804836

RESUMEN

Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.


Asunto(s)
ARN no Traducido/química , Telomerasa/metabolismo , Biocatálisis , Línea Celular , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN no Traducido/metabolismo , Telomerasa/antagonistas & inhibidores , Telomerasa/química , Telomerasa/genética , Telómero/metabolismo
3.
Cell ; 152(6): 1298-307, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23498938

RESUMEN

In biology as in real estate, location is a cardinal organizational principle that dictates the accessibility and flow of informational traffic. An essential question in nuclear organization is the nature of the address code--how objects are placed and later searched for and retrieved. Long noncoding RNAs (lncRNAs) have emerged as key components of the address code, allowing protein complexes, genes, and chromosomes to be trafficked to appropriate locations and subject to proper activation and deactivation. lncRNA-based mechanisms control cell fates during development, and their dysregulation underlies some human disorders caused by chromosomal deletions and translocations.


Asunto(s)
Núcleo Celular/química , Enfermedad/genética , ARN Largo no Codificante/química , Animales , Núcleo Celular/genética , Regulación de la Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Mol Cell ; 80(4): 557-559, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33217314

RESUMEN

In this issue of Molecular Cell,Sun et al. (2020) identify ERK-mediated phosphorylation of the m6A methyltransferase complex as a regulatory mechanism for m6A and pluripotency and highlight the potential of this interaction as a target for cancer therapy.


Asunto(s)
Procesamiento Proteico-Postraduccional , Metilación
5.
RNA ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684317

RESUMEN

RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in E. coli, which enabled us to identify similar modifications in P. aeruginosa. Our analysis revealed a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli. The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA modifying enzymes, some of which play roles in determining virulence and pathogenicity.

6.
Nat Rev Genet ; 21(11): 651-670, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32764716

RESUMEN

All organisms must safeguard the integrity of their DNA to avoid deleterious consequences of genome instability, which have been linked to human diseases such as autoimmune disorders, neurodegenerative diseases and cancer. Traditionally, genome maintenance has been viewed largely in terms of DNA-protein interactions. However, emerging evidence points to RNA as a key modulator of genome stability, with seemingly opposing roles in promoting chromosomal instability and protecting genome integrity. Unravelling the mechanistic and contextual basis of this duality will not only improve our understanding of the interfaces between RNA and the genome but will also provide important insights into how disrupted RNA metabolism contributes to disease origin, laying the foundation for targeted intervention.


Asunto(s)
Genoma Humano , Inestabilidad Genómica , ARN/fisiología , Adenosina/metabolismo , Animales , Reparación del ADN , Células Eucariotas , Humanos , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Retroelementos , Transcripción Genética
7.
Hum Mol Genet ; 32(22): 3135-3145, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37561409

RESUMEN

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant condition characterized by the development of cutaneous and uterine leiomyomas and risk for development of an aggressive form of papillary renal cell cancer. HLRCC is caused by germline inactivating pathogenic variants in the fumarate hydratase (FH) gene, which encodes the enzyme that catalyzes the interconversion of fumarate and L-malate. We utilized enzyme and protein mobility assays to evaluate the FH enzyme in a cohort of patients who showed clinical manifestations of HLRCC but were negative for known pathogenic FH gene variants. FH enzyme activity and protein levels were decreased by 50% or greater in three family members, despite normal FH mRNA expression levels as measured by quantitative PCR. Direct Nanopore RNA sequencing demonstrated 57 base pairs of retained intron sequence between exons 9 and 10 of polyadenylated FH mRNA in these patients, resulting in a truncated FH protein. Genomic sequencing revealed a heterozygous intronic alteration of the FH gene (chr1: 241498239 T/C) resulting in formation of a splice acceptor site near a polypyrimidine tract, and a uterine fibroid obtained from a patient showed loss of heterozygosity at this site. The same intronic FH variant was identified in an unrelated patient who also showed a clinical phenotype of HLRCC. These data demonstrate that careful clinical assessment as well as biochemical characterization of FH enzyme activity, protein expression, direct RNA sequencing, and genomic DNA sequencing of patient-derived cells can identify pathogenic variants outside of the protein coding regions of the FH gene.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Carcinoma de Células Renales/genética , Leiomiomatosis/genética , Leiomiomatosis/patología , Fumarato Hidratasa/genética , Fumarato Hidratasa/análisis , Neoplasias Renales/genética , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Mutación , ARN Mensajero/genética
8.
Mol Cell ; 67(2): 228-238.e5, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28625551

RESUMEN

Circular RNAs (circRNAs) are single-stranded RNAs that are joined head to tail with largely unknown functions. Here we show that transfection of purified in vitro generated circRNA into mammalian cells led to potent induction of innate immunity genes and confers protection against viral infection. The nucleic acid sensor RIG-I is necessary to sense foreign circRNA, and RIG-I and foreign circRNA co-aggregate in cytoplasmic foci. CircRNA activation of innate immunity is independent of a 5' triphosphate, double-stranded RNA structure, or the primary sequence of the foreign circRNA. Instead, self-nonself discrimination depends on the intron that programs the circRNA. Use of a human intron to express a foreign circRNA sequence abrogates immune activation, and mature human circRNA is associated with diverse RNA binding proteins reflecting its endogenous splicing and biogenesis. These results reveal innate immune sensing of circRNA and highlight introns-the predominant output of mammalian transcription-as arbiters of self-nonself identity.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/prevención & control , Tolerancia Inmunológica , Inmunidad Innata , Intrones , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/inmunología , ARN/genética , ARN/inmunología , Animales , Secuencia de Bases , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Proteína 58 DEAD Box/metabolismo , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/metabolismo , Encefalomielitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/inmunología , Encefalomielitis Equina Venezolana/metabolismo , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Tolerancia Inmunológica/genética , Inmunidad Innata/genética , Ratones , Conformación de Ácido Nucleico , Unión Proteica , Células RAW 264.7 , ARN/biosíntesis , ARN/química , ARN Circular , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Inmunológicos , Empalmosomas/inmunología , Empalmosomas/metabolismo , Transfección
9.
Cell ; 139(1): 135-48, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804759

RESUMEN

We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/análisis , Proteínas de Ciclo Celular/genética , Meiosis , Metafase , Mitosis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Uridina/metabolismo
10.
Cell ; 139(1): 123-34, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804758

RESUMEN

RNAi-related pathways regulate diverse processes, from developmental timing to transposon silencing. Here, we show that in C. elegans the Argonaute CSR-1, the RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and the Tudor-domain protein EKL-1 localize to chromosomes and are required for proper chromosome segregation. In the absence of these factors chromosomes fail to align at the metaphase plate and kinetochores do not orient to opposing spindle poles. Surprisingly, the CSR-1-interacting small RNAs (22G-RNAs) are antisense to thousands of germline-expressed protein-coding genes. Nematodes assemble holocentric chromosomes in which continuous kinetochores must span the expressed domains of the genome. We show that CSR-1 interacts with chromatin at target loci but does not downregulate target mRNA or protein levels. Instead, our findings support a model in which CSR-1 complexes target protein-coding domains to promote their proper organization within the holocentric chromosomes of C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Segregación Cromosómica , Animales , Caenorhabditis elegans/genética , ARN Helicasas DEAD-box/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo
11.
Mar Drugs ; 22(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38393046

RESUMEN

Marine invertebrates are a traditional source of natural products with relevant biological properties. Tunicates are soft-bodied, solitary or colonial, sessile organisms that provide compounds unique in their structure and activity. The aim of this work was to investigate the chemical composition of the ascidian Cystodytes dellechiajei, selected on the basis of a positive result in biological screening for ligands of relevant receptors of the innate immune system, including TLR2, TLR4, dectin-1b, and TREM2. Bioassay-guided screening of this tunicate extract yielded two known pyridoacridine alkaloids, shermilamine B (1) and N-deacetylshermilamine B (2), and a family of methyl-branched cerebrosides (3). Compounds 2 and 3 showed selective binding to TREM2 in a dose-dependent manner. N-deacetylshermilamine B (2), together with its acetylated analogue, shermilamine B (1), was also strongly cytotoxic against multiple myeloma cell lines. TREM2 is involved in immunomodulatory processes and neurodegenerative diseases. N-deacetylshermilamine B (2) is the first example of a polycyclic alkaloid to show an affinity for this receptor.


Asunto(s)
Alcaloides , Antineoplásicos , Urocordados , Animales , Urocordados/química , Alcaloides/farmacología , Alcaloides/química , Antineoplásicos/farmacología , Antineoplásicos/química
12.
Nature ; 548(7667): 338-342, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28792938

RESUMEN

N6-methyladenosine (m6A) is the most common and abundant messenger RNA modification, modulated by 'writers', 'erasers' and 'readers' of this mark. In vitro data have shown that m6A influences all fundamental aspects of mRNA metabolism, mainly mRNA stability, to determine stem cell fates. However, its in vivo physiological function in mammals and adult mammalian cells is still unknown. Here we show that the deletion of m6A 'writer' protein METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopaenic mouse adoptive transfer model, naive Mettl3-deficient T cells failed to undergo homeostatic expansion and remained in the naive state for up to 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding the STAT signalling inhibitory proteins SOCS1, SOCS3 and CISH were marked by m6A, exhibited slower mRNA decay and showed increased mRNAs and levels of protein expression in Mettl3-deficient naive T cells. This increased SOCS family activity consequently inhibited IL-7-mediated STAT5 activation and T cell homeostatic proliferation and differentiation. We also found that m6A has important roles for inducible degradation of Socs mRNAs in response to IL-7 signalling in order to reprogram naive T cells for proliferation and differentiation. Our study elucidates for the first time, to our knowledge, the in vivo biological role of m6A modification in T-cell-mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.


Asunto(s)
Adenosina/análogos & derivados , Homeostasis , Interleucina-7/inmunología , ARN Mensajero/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Linfocitos T/citología , Adenosina/metabolismo , Traslado Adoptivo , Animales , Diferenciación Celular , Proliferación Celular , Colitis/prevención & control , Proteínas de Unión al ADN/deficiencia , Modelos Animales de Enfermedad , Femenino , Masculino , Metilación , Metiltransferasas/deficiencia , Ratones , Estabilidad del ARN , ARN Mensajero/química , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
Trop Anim Health Prod ; 55(3): 158, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37052750

RESUMEN

Heat stress is one of the most important environmental challenges faced by dairy cattle, with a deleterious effect on animal production and welfare. This research was conducted to evaluate the effects of the thermal environment on the physiological and behavioral responses of dairy cattle in a rotational picket. The research was conducted on an experimental farm, located in the Agreste region of the state of Pernambuco, Brazil. The animals were managed in a rotational picket system of signal grass, with an occupation and a rest period of 7 and 28 days, respectively, for a stocking rate of 3.2 AU ha-1. The determination of the effect of stressors on the animals was performed by recording the dry bulb temperature (°C), and the relative humidity, which allowed the characterization of the thermal environment by the temperature and humidity index and by the specific enthalpy (kJ kg-1). The physiological variables monitored were respiratory rate (mov. min-1), rectal temperature (°C), and skin temperature (°C). The behavioral responses quantified were activities, walking, ruminating, idling and ingestive behaviors, eating, and drinking, with the percentage of time spent on each activity being recorded. According to the canonical multivariate analysis, the chi-square test, and the variation of physiological patterns, the animals, even in a situation of greater thermal challenge, presented physiological responses within conditions considered normal; however, they reduced grazing activity (eating) during the hottest hours and increased the activities of rumination and idling.


Asunto(s)
Adaptación Fisiológica , Calor , Animales , Bovinos , Femenino , Temperatura Corporal , Conducta Alimentaria , Humedad , Lactancia/fisiología , Temperatura , Métodos de Alimentación , Conducta Animal
14.
Sensors (Basel) ; 22(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632287

RESUMEN

The uncertainty analysis of attitude estimates enables the comparison between different methods, and, thus, it is important for practical applications. This work studies the uncertainty for the attitude determination of a three-vehicle constrained formation. Moreover, the existing solution is improved by including the uncertainty results in a weighted orthogonal Procrustes problem. In the formation considered herein, the vehicles measure inertial references and relative line-of-sight vectors. Nonetheless, the line of sight between two elements of the formation is restricted. The uncertainty analysis uses perturbation theory and, consequently, considers a small first-order perturbation in the measurements. The covariance matrices are obtained for all relative and inertial attitude candidates from the linearization of the solution using a first-order Taylor expansion. Then, the uncertainty is completed by considering the covariance for the weighted orthogonal Procrustes problem, from the literature, and the definition of covariance for the remaining attitudes. The uncertainty characterization is valid for configurations with a unique solution. Finally, the theoretical results are validated by applying Monte Carlo simulations, which show that the predicted errors are statistically consistent with the numerical implementation of the solution with noise. Furthermore, the theoretical uncertainty predicts the accuracy changes near special configurations where there is loss of information.

15.
J Soils Sediments ; 22(6): 1648-1661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495078

RESUMEN

Purpose: Identifying best practices for sediment fingerprinting or tracing is important to allow the quantification of sediment contributions from catchment sources. Although sediment fingerprinting has been applied with reasonable success, the deployment of this method remains associated with many issues and limitations. Methods: Seminars and debates were organised during a 4-day Thematic School in October 2021 to come up with concrete suggestions to improve the design and implementation of tracing methods. Results: First, we suggest a better use of geomorphological information to improve study design. Researchers are invited to scrutinise all the knowledge available on the catchment of interest, and to obtain multiple lines of evidence regarding sediment source contributions. Second, we think that scientific knowledge could be improved with local knowledge and we propose a scale of participation describing different levels of involvement of locals in research. Third, we recommend the use of state-of-the-art sediment tracing protocols to conduct sampling, deal with particle size, and examine data before modelling and accounting for the hydro-meteorological context under investigation. Fourth, we promote best practices in modelling, including the importance of running multiple models, selecting appropriate tracers, and reporting on model errors and uncertainty. Fifth, we suggest best practices to share tracing data and samples, which will increase the visibility of the fingerprinting technique in geoscience. Sixth, we suggest that a better formulation of hypotheses could improve our knowledge about erosion and sediment transport processes in a more unified way. Conclusion: With the suggested improvements, sediment fingerprinting, which is interdisciplinary in nature, could play a major role to meet the current and future challenges associated with global change. Supplementary information: The online version contains supplementary material available at 10.1007/s11368-022-03203-1.

16.
Nature ; 519(7544): 486-90, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25799993

RESUMEN

Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.


Asunto(s)
Regulación de la Expresión Génica , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Acilación , Adenosina/análogos & derivados , Animales , Sitios de Unión , Supervivencia Celular , Química Clic , Biología Computacional , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica/genética , Genoma/genética , Ratones , Modelos Moleculares , Biosíntesis de Proteínas/genética , ARN/clasificación , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico/genética , Ribosomas/metabolismo , Transcriptoma/genética
17.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34300370

RESUMEN

The existence of multiple solutions to an attitude determination problem impacts the design of estimation schemes, potentially increasing the errors by a significant value. It is therefore essential to identify such cases in any attitude problem. In this paper, the cases where multiple attitudes satisfy all constraints of a three-vehicle heterogeneous formation are identified. In the formation considered herein, the vehicles measure inertial references and relative line-of-sight vectors. Nonetheless, the line of sight between two elements of the formation is restricted, and these elements are denoted as deputies. The attitude determination problem is characterized relative to the number of solutions associated with each configuration of the formation. There are degenerate and ambiguous configurations that result in infinite or exactly two solutions, respectively. Otherwise, the problem has a unique solution. The degenerate configurations require some collinearity between independent measurements, whereas the ambiguous configurations result from symmetries in the formation measurements. The conditions which define all such configurations are determined in this work. Furthermore, the ambiguous subset of configurations is geometrically interpreted resorting to the planes defined by specific measurements. This subset is also shown to be a zero-measure subset of all possible configurations. Finally, a maneuver is simulated to illustrate and validate the conclusions. As a result of this analysis, it is concluded that, in general, the problem has one attitude solution. Nonetheless, there are configurations with two or infinite solutions, which are identified in this work.

18.
Bioorg Med Chem Lett ; 30(18): 127439, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32717373

RESUMEN

Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/metabolismo , Cisteína/química , Nitrilos/síntesis química , Sitios de Unión , Catepsina B/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Unión Proteica , Estereoisomerismo , Relación Estructura-Actividad
19.
J Chem Inf Model ; 60(3): 1666-1677, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32126170

RESUMEN

Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by K777 and Neq0682. The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to -26.7 and -5.9 kcal mol-1 for K777 and Neq0682 at the MP2/MM level, respectively. These results indicate that the ΔG of the reaction is very negative for the process involving K777, consequently, the covalent adduct cannot revert to a noncovalent protein-ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.


Asunto(s)
Proteasas de Cisteína , Trypanosoma cruzi , Cisteína Endopeptidasas , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Protozoarias
20.
Exp Parasitol ; 219: 108032, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33137308

RESUMEN

Chagas disease affects several countries around the world with health and sanitation problems. Cysteine proteases are essential for the virulence and replication of the Trypanosoma cruzi, being modulated by dipeptidyl nitriles and derivatives. Here, four dipeptidyl nitrile derivatives were assayed in three T. cruzi morphologies and two strains (Tulahuen and Y) using a set of assays: (i) analysis of the inhibitory activity against cysteine proteases; (ii) determination of the cytotoxic activity and selectivity index; (iii) verification of the inhibition of the trypomastigote invasion in the host cell. These compounds could inhibit the activity of cysteine proteases using the selective substrate Z-FR-MCA for the trypomastigote lysate and extracellular amastigotes. Interestingly, these compounds did not present relevant enzymatic inhibition for the epimastigote lysate. Most of the substances were also cytotoxic and selective against the trypomastigotes and intracellular amastigotes. The best compound of the series (Neq0662) could reduce the enzymatic activity of the cysteine proteases for the trypomastigotes and amastigotes. It was equipotent to the benznidazole drug in the cytotoxic studies using these two parasite forms. Neq0662 was also selective for the parasite, and it inhibited the invasion of the mammalian host cell in all conditions tested at 10 µM. The stereochemistry of the trifluoromethyl group was an important factor for the bioactivity when the two diastereomers (Neq0662 and Neq0663) were compared. All-in-all, these results indicate that these compounds could move further in the drug development stage because of its promising bioactive profile.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Nitrilos/farmacología , Trypanosoma cruzi/efectos de los fármacos , Análisis de Varianza , Animales , Antiparasitarios/química , Antiparasitarios/farmacología , Área Bajo la Curva , Línea Celular , Supervivencia Celular , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/toxicidad , Haplorrinos , Riñón/citología , Nitrilos/química , Proteolisis , Estereoisomerismo , Sales de Tetrazolio , Tiazoles , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA