Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phytopathology ; 114(1): 84-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37486097

RESUMEN

Citrus greening disease, or Huanglongbing (HLB), has devastated citrus crops globally in recent years. The causal bacterium, 'Candidatus Liberibacter asiaticus', presents a sampling issue for qPCR diagnostics and results in a high false negative rate. In this work, we compared six metabolomics assays to identify HLB-infected citrus trees from leaf tissue extracted from 30 control and 30 HLB-infected trees. A liquid chromatography-mass spectrometry-based assay was most accurate. A final partial least squares-discriminant analysis (PLS-DA) model was trained and validated on 690 leaf samples with corresponding qPCR measures from three citrus varieties (Rio Red grapefruit, Hamlin sweet orange, and Valencia sweet orange) from orchards in Florida and Texas. Trees were naturally infected with HLB transmitted by the insect vector Diaphorina citri. In a randomized validation set, the assay was 99.9% accurate to classify diseased from nondiseased samples. This model was applied to samples from trees receiving plant defense-inducer compounds or biological treatments to prevent or cure HLB infection. From two trials, HLB-related metabolite abundances and PLS-DA scores were tracked longitudinally and compared with those of control trees. We demonstrate how our assay can assess tree health and the efficacy of HLB treatments and conclude that no trialed treatment was efficacious.


Asunto(s)
Citrus sinensis , Citrus , Hemípteros , Liberibacter , Rhizobiaceae , Citrus/microbiología , Rhizobiaceae/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Árboles
2.
Phytopathology ; 114(5): 885-909, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38478738

RESUMEN

Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Agricultura , Antibacterianos , Enfermedades de las Plantas , Antibacterianos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Citrus/microbiología , Farmacorresistencia Bacteriana , Estreptomicina/farmacología
3.
Virol J ; 20(1): 136, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349823

RESUMEN

BACKGROUND: Tomato chlorotic spot virus (TCSV) is an economically important, thrips-transmitted, emerging member of the Orthotospovirus genus that causes significant yield loss mainly in tomatoes, but also in other vegetable and ornamental crops. Disease management of this pathogen is often challenging due to the limited availability of natural host resistance genes, the broad host range of TCSV, and the wide distribution of its thrips vector. Point-of-care detection of TCSV with a rapid, equipment-free, portable, sensitive, and species-specific diagnostic technique can provide prompt response outside the laboratory, which is critical for preventing disease progression and further spread of the pathogen. Current diagnostic techniques require either laboratory-dependent or portable electronic equipment and are relatively time-consuming and costly. RESULTS: In this study, we developed a novel technique for reverse-transcription recombinase polymerase amplification combined with lateral flow assay (RT-RPA-LFA) to achieve a faster and equipment-free point-of-care detection of TCSV. The RPA reaction tubes containing crude RNA are incubated in the hand palm to obtain sufficient heat (∼36 °C) for the amplification without the need for equipment. Body-heat mediated RT-RPA-LFA is highly TCSV-specific with a detection limit as low as ∼6 pg/µl of total RNA from TCSV-infected tomato plants. The assay can be performed in 15 min in the field. CONCLUSION: To the best of our knowledge, this is the first equipment-free, body-heat-mediated RT-RPA-LFA technique developed to detect TCSV. Our new system offers a time-saving advantage for the sensitive and specific diagnostic of TCSV that local growers and small nurseries in low-resource settings can use without skilled personnel.


Asunto(s)
Transcripción Reversa , Solanum lycopersicum , Recombinasas/genética , Sensibilidad y Especificidad , Nucleotidiltransferasas/genética , ARN , Técnicas de Amplificación de Ácido Nucleico/métodos
4.
Phytopathology ; 113(3): 567-576, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36222536

RESUMEN

Tomato chlorotic spot virus (TCSV) is a highly destructive, thrips-transmitted, emerging orthotospovirus in various vegetable and ornamental crops. It is important to reduce the risk of spreading this virus by limiting the movement of infected plant materials to other geographic areas by utilizing point-of-care diagnostics. Current diagnostic assays for TCSV require costly lab equipment, skilled personnel, and electricity. Here, we report the development of a simple rechargeable battery-operated handwarmer-assisted reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay and demonstrate a step-by-step protocol to achieve in-field detection of TCSV. Under field conditions, handwarmer-assisted RT-LAMP can detect as little as 0.9 pg/µl of total RNA from TCSV-infected tomato plants in <35 min. When fully charged, the field-portable device can be used in six consecutive RT-LAMP detection assays, yielding test results for 96 individual samples. Dye-based colorimetric methods, including pH and metal ion indicators, were evaluated to eliminate laboratory-dependent LAMP visualization. Phenol red combined with hydroxynaphthol blue was adopted in the handwarmer-assisted RT-LAMP detection method to obtain a more robust color difference distinguishable by the naked eye. Overall, handwarmer-assisted RT-LAMP is a rapid, highly sensitive, and cost-effective diagnostic technique that can be used by nonspecialist personnel in the field, particularly in rural production areas lacking access to a diagnostic lab or constant electricity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Solanum lycopersicum , Enfermedades de las Plantas , Técnicas de Amplificación de Ácido Nucleico/métodos , Transcripción Reversa , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular
5.
Phytopathology ; 113(6): 1010-1021, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36474420

RESUMEN

Huanglongbing (HLB) is a devastating bacterial disease associated with 'Candidatus Liberibacter asiaticus'. The location of the pathogen within the vasculature of the tree has left growers with limited options for the effective management of the disease. Trunk injection is a crop protection technique that applies therapeutics directly into the xylem of woody tree species and allows for their systemic uptake and transport, which may provide more effective management of vascular diseases such as HLB. In this study, mature 'Valencia' and 'Hamlin' sweet orange (Citrus sinensis) and 'Duncan' grapefruit (C. paradisi) trees were injected with oxytetracycline (OTC) in the spring and/or fall to evaluate the effects of injection timing and response to injection. In addition to seasonal evaluations of tree health and bacterial titer, preharvest fruit drop, yield, and fruit quality were measured at harvest to determine the effects of OTC injection. The benefits associated with injection included a reduction in fruit drop, an increase in fruit yield and fruit size, and improvements in juice quality. However, results varied due to the timing of injection and were not consistent across all three varieties. Residue analysis at different time points after injection suggests that trunk injection effectively delivers therapeutics to mature citrus trees. This study provides fundamental information on the short-term benefits associated with trunk injection of OTC for HLB management in citrus groves. The potential for use of trunk injection at the commercial scale and the possible risks are discussed.


Asunto(s)
Citrus paradisi , Citrus sinensis , Citrus , Oxitetraciclina , Rhizobiaceae , Citrus sinensis/microbiología , Rhizobiaceae/fisiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Árboles
6.
Phytopathology ; 112(1): 81-88, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34645320

RESUMEN

'Candidatus Liberibacter asiaticus' (Las) is the prominent species of Liberibacter associated with huanglongbing, a devastating disease of citrus worldwide. In this study, we report the identification of an ∼8.3-kb DNA region of the Las genome containing eight putative open reading frames flanked by two inverted repeats, which was not present in the Las str. psy62 genome. Comparisons with other genome sequences established this region as a unique genetic element associated with genome plasticity/instability. Primers specific for both the presence (Las wild type) and absence (Las mutant) of this region were designed to study the population dynamics and host adaptation of the two strains. Las populations with and/or without the wild-type strain were detected and differentiated in >2,300 samples that included psyllids, periwinkle, and several species of citrus. In psyllids, although a mixed population of the wild type and mutant was observed in most samples (88%), the wild-type Las was detected alone at a rate of 11%. In contrast, none of the infected citrus plants were positive for the wild type alone, which harbored either the mutant strain alone (8%) or a mixed population of the mutant and wild type (92%). Furthermore, the dynamics of these two major Las populations varied with different citrus hosts, whereas an in-depth study on grapefruit that did not rapidly succumb to disease revealed that the population of mutant alone increased with time, indicating that the absence of this genetic element is associated with the fitness of Las in planta under the selection pressure of its host.


Asunto(s)
Citrus , Rhizobiaceae , Liberibacter , Enfermedades de las Plantas , Rhizobiaceae/genética , Eliminación de Secuencia
7.
Arch Virol ; 164(11): 2829-2836, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31486908

RESUMEN

The complete sequence of the medium (M) and small (S) RNA genome segments were determined for twelve isolates of impatiens necrotic spot virus from eight plant species. The M- and S-RNAs of these isolates shared 97-99% and 93-98% nucleotide sequence identity, respectively, with the corresponding full-length sequences available in public databases. Phylogenetic analysis based on the M- or S-RNA sequences showed incongruence in the phylogenetic position of some isolates, suggesting intraspecies segment reassortment. The lack of phylogenetic discordance in individual and concatenated sequences of individual genes encoded by M- or S-RNAs suggests that segment reassortment rather than recombination is driving evolution of these INSV isolates.


Asunto(s)
ARN Viral/genética , Virus Reordenados/genética , Tospovirus/genética , Secuencia de Bases , Genoma Viral/genética , Plantas/virología , Análisis de Secuencia de ARN , Tospovirus/aislamiento & purificación
8.
Plant Dis ; 103(7): 1525-1535, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31012822

RESUMEN

Rasta is a virus-like disease of unknown etiology affecting tomato (Solanum lycopersicum) plants in Ghana. Symptoms include stunting; epinasty, crumpling, and chlorosis of leaves; and necrosis of leaf veins, petioles, and stems. Leaf samples with rasta symptoms were collected from commercial tomato fields in Ghana in October 2012 and applied to FTA cards, and RNA extracts were prepared. Reverse-transcription polymerase chain reaction (RT-PCR) tests with primers for Columnea latent viroid, which causes rasta-like symptoms in tomato plants in Mali, were negative, whereas tests with degenerate viroid primer pairs were inconclusive. However, tomato seedlings (Early Pak 7) mechanically inoculated with RNA extracts of 10 of 13 samples developed rasta-like symptoms. In RT-PCR tests with RNA from leaves of the 10 symptomatic seedlings and primers for Potato spindle tuber viroid (PSTVd) or Tomato apical stunt viroid (TASVd), the expected size (approximately 360 bp) of DNA fragment was amplified from eight and two seedlings, respectively. Sequence analyses confirmed that these fragments were from PSTVd and TASVd isolates, and revealed a single PSTVd haplotype and two TASVd haplotypes. The PSTVd and TASVd isolates from Ghana had high nucleotide identities (>94%) with isolates from other geographic regions. In a host range study, PSTVd and TASVd isolates from Ghana induced rasta symptoms in the highly susceptible tomato cultivar Early Pak 7 and mild or no symptoms in Glamour, and symptomless infections in a number of other solanaceous species. PSTVd and TASVd isolates were seed associated and possibly seed transmitted.


Asunto(s)
Virus de Plantas , Solanum lycopersicum , Viroides , Secuencia de Bases , Ghana , Solanum lycopersicum/virología , Malí , Virus de Plantas/fisiología , Viroides/fisiología
9.
PLoS One ; 19(7): e0305402, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985801

RESUMEN

Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic loss to tomato production, and the Sw-5b resistance gene is widely deployed for management. Here, we show (i) the emergence of resistance-breaking (RB) TSWV strains in processing and fresh market tomato production in California over the past ten years, and (ii) evolutionary relationships with RB strains from other areas. A specific RT-PCR test was used to show the C118Y RB strain that emerged in Fresno County in 2016 quickly became predominant in the central production area and remained so through this study. In 2021, the C118Y strain was detected in the Northern production area, and was predominant in 2022. However, in 2023, the C118Y strain was unexpectedly detected in fewer spotted wilt samples from resistant varieties. This was due to emergence of the T120N RB strain, previously known to occur in Spain. A specific RT-PCR test was developed and used to show that the T120N RB strain was predominant in Colusa and Sutter counties (detected in 75-80% of samples), and detected in ~50% of samples from Yolo County. Pathogenicity tests confirmed California isolates of the T120N strain infected Sw-5b tomato varieties and induced severe symptoms. Another RB strain, C118F, was associated with spotted wilt samples of Sw-5 varieties from fresh market tomato production in southern California. Phylogenetic analyses with complete NSm sequences revealed that the C118Y and T120N RB strains infecting resistant processing tomato in California emerged locally, whereas those from fresh market production were more closely related to isolates from Mexico. Thus, widespread deployment of this single dominant resistance gene in California has driven the local emergence of multiple RB strains in different tomato production areas and types. These results further emphasize the need for ongoing monitoring for RB strains, and identification of sources of resistance to these strains.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Solanum lycopersicum , Tospovirus , Solanum lycopersicum/virología , Solanum lycopersicum/genética , California , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Tospovirus/genética , Tospovirus/patogenicidad , Resistencia a la Enfermedad/genética , Filogenia
10.
Viruses ; 15(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38140546

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) is an economically important seed and mechanically transmitted pathogen of significant importance to tomato production around the globe. Synergistic interaction with pepino mosaic virus (PepMV), another seed and mechanically transmitted virus, and long-distance dissemination of these two viruses via contaminated tomato fruits through global marketing were previously suggested. In 2019, we detected both viruses in several grocery store-purchased tomatoes in South Florida, USA. In this study, to identify potential sources of inoculum, co-infection status, prevalence, and genomic diversity of these viruses, we surveyed symptomatic and asymptomatic imported tomatoes sold in ten different groceries in four cities in South Florida. According to the product labels, all collected tomatoes originated from Canada, Mexico, or repacking houses in the United States. With high prevalence levels, 86.5% of the collected samples were infected with ToBRFV, 90% with PepMV alone, and 73% were mixed-infected. The phylogenetic study showed no significant correlations between ToBRFV genomic diversity and the tomato label origin. Phylogenetic analysis of PepMV isolates revealed the prevalence of the PepMV strains, Chilean (CH2) and recombinant (US2). The results of this study highlight the continual presence of PepMV and ToBRFV in imported tomatoes in Florida grocery stores.


Asunto(s)
Coinfección , Solanum lycopersicum , Tobamovirus , Frutas , Florida/epidemiología , Filogenia , Prevalencia , Coinfección/epidemiología , Genómica
11.
Insects ; 14(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36835735

RESUMEN

Asian citrus psyllid (Diaphorina citri) transmits the bacterial pathogen Candidatus Liberibacter asiaticus (CLas), the putative causative agent of citrus Huanglongbing disease (HLB). Insect-specific viruses can act against insects as their natural enemies, and recently, several D. citri-associated viruses were discovered. The insect gut plays an important role as not only a pool for diverse microbes but also as a physical barrier to prevent the spread of pathogens such as CLas. However, there is little evidence of the presence of D. citri-associated viruses in the gut and of the interaction between them and CLas. Here, we dissected psyllid guts collected from five growing regions in Florida, and the gut virome was analyzed by high throughput sequencing. Four insect viruses, including D. citri-associated C virus (DcACV), D. citri densovirus (DcDV), D. citri reovirus (DcRV), and D. citri flavi-like virus (DcFLV), were identified, and their presence in the gut, including an additional D. citri cimodo-like virus (DcCLV), were confirmed with PCR-based assays. Microscopic analysis showed that DcFLV infection leads to morphological abnormalities in the nuclear structure in the infected psyllid gut cells. The complex and diverse composition of microbiota in the psyllid gut suggests a possible interaction and dynamics between CLas and the D. citri-associated viruses. Our study identified various D. citri-associated viruses that localized in the psyllid gut and provided more information that helps to evaluate the potential vectors for manipulating CLas in the psyllid gut.

12.
Front Plant Sci ; 14: 1056603, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998684

RESUMEN

Virome analysis via high-throughput sequencing (HTS) allows rapid and massive virus identification and diagnoses, expanding our focus from individual samples to the ecological distribution of viruses in agroecological landscapes. Decreases in sequencing costs combined with technological advances, such as automation and robotics, allow for efficient processing and analysis of numerous samples in plant disease clinics, tissue culture laboratories, and breeding programs. There are many opportunities for translating virome analysis to support plant health. For example, virome analysis can be employed in the development of biosecurity strategies and policies, including the implementation of virome risk assessments to support regulation and reduce the movement of infected plant material. A challenge is to identify which new viruses discovered through HTS require regulation and which can be allowed to move in germplasm and trade. On-farm management strategies can incorporate information from high-throughput surveillance, monitoring for new and known viruses across scales, to rapidly identify important agricultural viruses and understand their abundance and spread. Virome indexing programs can be used to generate clean germplasm and seed, crucial for the maintenance of seed system production and health, particularly in vegetatively propagated crops such as roots, tubers, and bananas. Virome analysis in breeding programs can provide insight into virus expression levels by generating relative abundance data, aiding in breeding cultivars resistant, or at least tolerant, to viruses. The integration of network analysis and machine learning techniques can facilitate designing and implementing management strategies, using novel forms of information to provide a scalable, replicable, and practical approach to developing management strategies for viromes. In the long run, these management strategies will be designed by generating sequence databases and building on the foundation of pre-existing knowledge about virus taxonomy, distribution, and host range. In conclusion, virome analysis will support the early adoption and implementation of integrated control strategies, impacting global markets, reducing the risk of introducing novel viruses, and limiting virus spread. The effective translation of virome analysis depends on capacity building to make benefits available globally.

13.
Front Plant Sci ; 13: 1050650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570892

RESUMEN

The citrus industry of Florida faces insurmountable challenges against the destructive diseases citrus tristeza and Huanglongbing (HLB, or citrus greening). Though the tristeza causal agent, citrus tristeza virus (CTV), has been in Florida decades longer than HLB, growers have concentrated most of their efforts on combating the more detrimental HLB. The Asian citrus psyllid (Diaphorina citri; ACP) is the insect vector of the bacterial pathogen Candidatus Liberibacter asiaticus and transmits the incurable HLB to all commercial citrus. During our searches for biological and viral controls against the ACP, we consistently detected sequences of CTV in Florida field populations of ACP. This unexpected finding led us to investigate whether ACPs collected from young shoots could be used as a tool to survey CTV in Florida citrus groves. We first surveyed for the most common CTV strains in Florida (T30, T36, and VT/T68) in citrus trees on mostly sour orange (Citrus aurantium) rootstock, the rootstock susceptible to CTV decline. Out of 968 trees sampled across five years (2018-2022), approximately 8.2% were positive for CTV, with more than half of the CTV-positive trees infected with strain T30. Simultaneously, we looked at CTV strains in ACPs during this time and found that approximately 88% of pooled adult and nymph ACPs also had CTV, with over half the positive samples having the T36 strain. As a result of the much higher CTV incidences in the ACPs, we conducted a second investigation into whether we could more easily detect the same CTV strains in ACP nymphs as in CTV-infected citrus tissue. After individually sampling 43 trees and pooling the nymphs from each tree, we detected CTV at about the same incidence in the citrus tissue and the nymphs, but with much less ACP tissue, time, and resources required for detection compared to citrus tissue. Results from this study illustrate the sustained threat of CTV to Florida citrus and demonstrate the ACP as a potential bioindicator for CTV.

14.
Virology ; 567: 47-56, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34998225

RESUMEN

Huanglongbing is caused by Candidatus Liberibacter asiaticus (CLas) and transmitted by Diaphorina citri. D. citri harbors various insect-specific viruses, including the Diaphorina citri flavi-like virus (DcFLV). The distribution and biological role of DcFLV in its host and the relationship with CLas are unknown. DcFLV was found in various organs of D. citri, including the midgut and salivary glands, where it co-localized with CLas. CLas-infected nymphs had the highest DcFLV titers compared to the infected adults and CLas-free adults and nymphs. DcFLV was vertically transmitted to offspring from female D. citri and was temporarily detected in Citrus macrophylla and grapefruit leaves from greenhouse and field. The incidences of DcFLV and CLas were positively correlated in field-collected D. citri samples, suggesting that DcFLV might be associated with CLas in the vector. These results provide new insights on the interactions between DcFLV, the D. citri, and CLas.


Asunto(s)
Citrus/microbiología , Flavivirus/genética , Hemípteros/virología , Insectos Vectores/virología , Liberibacter/genética , Ninfa/virología , Animales , ADN Bacteriano/genética , Femenino , Hemípteros/microbiología , Insectos Vectores/microbiología , Intestinos/microbiología , Intestinos/virología , Liberibacter/patogenicidad , Ninfa/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , ARN Viral/genética , Glándulas Salivales/microbiología , Glándulas Salivales/virología , Simbiosis/fisiología
15.
Insects ; 13(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35323573

RESUMEN

The destructive citrus disease, Huanglongbing (HLB) or citrus greening, continues to devastate Florida's citrus industry. A hemipteran insect, the Asian citrus psyllid (ACP), disperses Candidatus Liberibacter asiaticus, one of the putative bacterial pathogens of HLB. This study builds upon ongoing research utilizing high-throughput sequencing to analyze the virome of ACP populations collected from citrus groves throughout Florida. Following the widespread detection of sequences aligning to the genome of citrus tristeza virus (CTV) across consecutive years in the Florida ACP virome, we continued to detect a pervasive amount of CTV in Florida ACPs during subsequent years. Simultaneously, we also detected mixed infections of CTV strains in pooled ACPs from different Florida regions. Predating the HLB epidemic, CTV has been present in Florida for many years and our results confirm its widespread and diverse persistence in Florida citrus groves through a unique lens, the ACP. CTV presence in the ACP likely results from feeding on CTV-infected citrus trees in Florida citrus groves, which may help to understand an overlapping presence of CTV and HLB, both endemic citrus pathosystems in the state, and their role in future integrated pest management strategies.

16.
Antibiotics (Basel) ; 10(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065819

RESUMEN

Oxytetracycline (OTC) and streptomycin have been used for the control of several plant diseases and were recently permitted for the control of citrus greening disease, Huanglongbing. Consequently, sensitive and reliable methods are highly needed for the detection of OTC in citrus tissues. Herein, we studied the replacement of cetyltrimethylammonium chloride (CTAC) by citrate (Cit) as a sensitizing agent for the analysis of OTC in citrus tissues using the recently established europium (Eu) method. In addition, we determined the optimal conditions for the formation of the Eu-OTC-Cit ternary complex in tris buffer. Our results showed that the plant matrix significantly decreased the fluorescence intensity of the Eu-OTC-Cit complex even after the replacement of CTAC. Our investigations showed that phenols such as gallic acid degrade slowly at high pH and their degradation was enhanced in the presence of the (Eu+3) cation. To reduce the plant matrix interference, the sample extract was cleaned using solid-phase extraction (SPE). The OTC recoveries from spiked healthy and Candidatus Liberibacter asiaticus (CLas)-infected trees were 91.4 ± 7.8% and 82.4 ± 3.9%, respectively. We also used the citrate method to determine the level of OTC in trunk-injected trees. The level of OTC as measured using the Eu-OTC-Cit complex (117.5 ± 20.3 µg g-1 fresh weight "FWT") was similar to that measured using Eu-OTC-CTAC complex (97.5 ± 14 µg g-1 FWT). In addition, we were able to visualize the OTC in citrus leaf extract, under ultraviolet light (400 nm), after it was cleaned with the SPE. Our study showed that the citrate can be successfully used to replace the harmful CTAC surfactant, which could also react with phenols.

17.
Antibiotics (Basel) ; 10(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34572618

RESUMEN

Oxytetracycline (OTC) has been used for the control of several plant diseases and was recently approved for the control of Huanglongbing, the citrus greening disease. Huanglongbing is caused by the phloem limited 'Candidatus Liberibacter asiaticus'. Determination of OTC in the xylem and phloem of citrus plants is of great interest as they are the main routes of translocation in citrus. In addition, the determination of the level of OTC in the phloem sap is necessary for the control of the 'Ca. L. asiaticus' pathogen, which resides in the phloem. Herein, we demonstrated that the level of OTC in the citrus phloem and xylem saps obtained using the centrifugation method can be successfully measured using the europium (Eu) method directly or with cleanup by solid-phase extraction (SPE). Recovery of OTC from spiked sap samples purified by solid-phase extraction (SPE) was higher than 90%, while recovery from saps without SPE cleanup were nearly 100%. The 'Ca. L. asiaticus'-infected leaf and phloem sap samples showed higher inhibition of the fluorescence intensity of the OTC standard compared to non-infected control leaf and phloem samples. In agreement with this finding, the levels of phenols and flavonoids in 'Ca. L. asiaticus'-infected leaves were higher than those controls and were shown to interfere with the Eu method. Therefore, the SPE cleanup step only improved OTC recovery from leaf samples containing the interfering compounds. The Eu method was then used to determine OTC levels in the phloem and xylem sap of OTC-treated plants, and the results were similar whether measured directly or after SPE. Visualization under ultraviolet light (400 nm) showed the presence of OTC in citrus xylem and phloem saps with and without the use of SPE.

18.
Microbiol Resour Announc ; 10(34): e0056321, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34435852

RESUMEN

This report describes the partial (nearly complete) genome sequence of a novel reo-like virus tentatively named Diaphorina citri Cimodo-like virus. This putative virus has 10 double-stranded RNA segments and was detected in Asian citrus psyllid (Diaphorina citri) populations collected from Florida commercial citrus groves.

19.
Pathogens ; 9(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764311

RESUMEN

Tomato spotted wilt virus (TSWV; species Tomato spotted wilt orthotospovirus; genus Orthotospovirus; family Tospoviridae) is a thrips-transmitted virus that can cause substantial economic losses to many crops, including tomato (Solanum lycopersicum). Since 2005, TSWV emerged as an economically important virus of processing tomatoes in the Central Valley of California, in part due to increased populations of the primary thrips vector, western flower thrips (WFT; Frankliniella occidentalis). To develop an understanding of the epidemiology of TSWV in this region, population densities of WFT and incidence of TSWV were monitored in California's processing tomato transplant-producing greenhouses and associated open fields from 2007 to 2013. Thrips were monitored with yellow sticky cards and in tomato flowers, whereas TSWV incidence was assessed with indicator plants and field surveys for virus symptoms. All thrips identified from processing tomato fields were WFT, and females were three-fold more abundant on sticky cards than males. Symptoms of TSWV infection were observed in all monitored processing tomato fields. Incidences of TSWV ranged from 1 to 20%, with highest incidence found in late-planted fields. There was no single primary inoculum source, and inoculum sources for thrips/TSWV varied depending on the production region. These results allowed us to develop a model for TSWV infection of processing tomatoes in the Central Valley of California. The model predicts that low levels of primary TSWV inoculum are amplified in early-planted tomatoes and other susceptible crops leading to highest levels of infection in later-planted fields, especially those with high thrips populations. Based upon these findings, an integrated pest management (IPM) strategy for TSWV in processing tomatoes in California was devised. This IPM strategy focuses on strategic field placement (identification of high-risk situations), planting TSWV- and thrips-free transplants, planting resistant varieties, monitoring for TSWV symptoms and thrips, roguing infected plants, thrips management targeting early generations, extensive sanitation after harvest, and strategic cropping to avoid overlap with winter bridge crops.

20.
Transgenic Res ; 18(3): 331-45, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18821075

RESUMEN

Grapevine virus A (GVA) is closely associated with the economically important rugose-wood disease of grapevine. In an attempt to develop GVA resistance, we made a GFP-tagged GVA-minireplicon and utilized it as a tool to consistently activate RNA silencing. Launching the GVA-minireplicon by agroinfiltration delivery resulted in a strong RNA silencing response. In light of this finding, we produced transgenic Nicotiana benthamiana plants expressing the GVA-minireplicon, which displayed phenotypes that could be attributed to reproducibly and consistently activate post-transcriptional gene silencing (PTGS). These included: (i) low accumulation of the minireplicon-derived transgene; (ii) low GFP expression that was increased upon agroinfiltration delivery of viral suppressors of silencing; and (iii) resistance against GVA infection, which was found in 60%, and in 90-95%, of T1 and T2 progenies, respectively. A grafting assay revealed that non-silenced scions exhibited GVA resistance when they were grafted onto silenced rootstocks, suggesting transmission of RNA silencing from silenced rootstocks to non-silenced scions. Despite being extremely resistant to GVA infection, the transgenic plants were susceptible to the closely related vitivirus, GVB. Furthermore, infection of the silenced plants with GVB or Potato virus Y (PVY) resulted in suppression of the GVA-specific defense. From these data we conclude that GVA-minireplicon-mediated RNA silencing provides an important and efficient approach for consistent activation of PTGS that can be used for controlling grapevine viruses. However, application of this strategy for virus resistance necessitates consideration of possible infection by other viruses.


Asunto(s)
Nicotiana/genética , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , Virus de Plantas/fisiología , Plantas Modificadas Genéticamente/virología , Potyvirus/fisiología , Nicotiana/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA