Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cells Transl Med ; 10(2): 164-180, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33034162

RESUMEN

While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Pérdida Auditiva Sensorineural , Trasplante de Células Madre , Lesiones Traumáticas del Encéfalo/terapia , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Pérdida Auditiva Sensorineural/terapia , Humanos
2.
J Audiol Otol ; 22(4): 209-222, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30126263

RESUMEN

BACKGROUND AND OBJECTIVES: Sensorineural hearing loss (SNHL) in children is associated with neurocognitive morbidity. The cause of SNHL is a loss of hair cells in the organ of Corti. There are currently no reparative treatments for SNHL. Numerous studies suggest that cord blood mononuclear cells (human umbilical cord blood, hUCB) allow at least partial restoration of SNHL by enabling repair of a damaged organ of Corti. Our objective is to determine if hUCB is a safe treatment for moderate to severe acquired SNHL in children. Subjects and. METHODS: Eleven children aged 6 months to 6 years with moderate to severe acquired SNHL were treated with intravenous autologous hUCB. The cell dose ranged from 8 to 30 million cells/kg body weight. Safety was assessed by measuring systemic hemodynamics during hUCB infusion. Infusion-related toxicity was evaluated by measuring neurologic, hepatic, renal and pulmonary function before and after infusion. Auditory function, auditory verbal language assessments and MRI with diffusion tensor imaging (DTI) were obtained before and after treatment. RESULTS: All patients survived, and there were no adverse events. No infusionrelated changes in hemodynamics occurred. No infusion-related toxicity was recorded. Five subjects experienced a reduction in auditory brainstem response (ABR) thresholds. Four of those 5 subjects also experienced an improvement in cochlear nerve latencies. Comparison of MRI with DTI sequences obtained before and after treatment revealed increased fractional anisotropy in the primary auditory cortex in three of five subjects with reduced ABR thresholds. Statistically significant (p<0.05) reductions in ABR thresholds were identified. CONCLUSIONS: TIntravenous hUCB is feasible and safe in children with SNHL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA