Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chin J Physiol ; 62(5): 182-187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31670281

RESUMEN

Both nesfatin-1 and cannabinoid systems involved in the regulation of sleep, metabolism, and food intake. The relationship between cannabinoid system and nesfatin-1 levels remains to be elucidated. This study investigated nesfatin-1 and insulin resistance in 72-h rapid eye movement (REM) sleep-deprived mice under the effects of cannabinoid, and cannabinoid receptors CB1R and CB2R blocking. Sixty mice were exposed to 72-h sleep deprivation. Groups and drug administrations were as follows: Group 1 (control) received injection of vehicle. Group 2 received WIN 55,212,2. Group 3 received AM251 (CB1R antagonist) followed by WIN 55,212,2 injection. Group 4 received SR144528 (CB2R antagonist) followed by WIN 55,212,2 injection. Group 5 received only AM251. Group 6 received only SR144528. Blood samples were collected 1 h after drug administration and prepared for biochemical measurements. Glucose levels were measured by glucometer, whereas insulin and nesfatin-1 levels were measured by ELISA. Central nesfatin-1 was also assessed using immunohistochemistry. One-way analysis of variance together with post hoc Tukey's test was used for inter-group comparisons. Serum nesfatin-1 levels were comparable in all study groups. Brain nesfatin-1 immune-positive cell count was lower in WIN group compared to controls. The administration of CB1R or CB2R antagonist prevented reduction in nesfatin-1-positive cell count. Insulin resistance was higher in WINCB2 and CB2 groups than in control and WINCB1 groups. Cannabinoid treatment reduced nesfatin-1 immunoreactivity in the central nervous system and this effect was prevented by either CB1R or CB2R antagonist pretreatment. Insulin resistance might be related to CB2 receptor activation which was independent from central nesfatin-1 immunoreactivity.


Asunto(s)
Resistencia a la Insulina , Animales , Cannabinoides , Insulina , Ratones , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
2.
Biotech Histochem ; 97(5): 363-371, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34789048

RESUMEN

We investigated how proanthocyanidin treatment altered c-Jun N-terminal kinases, transforming growth factor beta 1, serine/threonine-specific protein kinase, interleukin 1 beta and insulin-like 3 expression in the testis of diabetic rats. We used 24 Wistar albino male rats divided into four groups. Group 1 was untreated control. Group 2 was treated with 40 mg/kg streptozotocin (STZ) for 5 days. Group 3 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin once daily for six weeks. Group 4 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin. Superoxide dismutase activity was reduced in groups 3 and 4 compared to group 2. Glutathione peroxidase activity was increased significantly in groups 3 and 4 compared to groups 1 and 2. Catalase activity was decreased in group 4 compared to group 2. We found that proanthocyanidin increased cell proliferation in diabetic testis. Phospho-JNK and TGF-ß1 immunostaining was decreased groups 3 and 4 compared to group 2, while p-Akt immunostaining was increased in groups 3 and 4. The number of IL-1ß immunostained cells in groups 3 and 4 was decreased compared to group 2. INSL-3 immunostaining was increased significantly in group 3 compared to group 2. Our findings indicate that proanthocyanidin ameliorated diabetes related testicular dysfunction. Proanthocyanidin contributes to a balanced oxidant-antioxidant status, and balanced proliferation and apoptosis activity in the germinal cells.


Asunto(s)
Diabetes Mellitus Experimental , Proantocianidinas , Animales , Antioxidantes/metabolismo , Apoptosis , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Interleucina-1beta/metabolismo , Masculino , Estrés Oxidativo , Proantocianidinas/metabolismo , Proantocianidinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Estreptozocina/farmacología , Testículo/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA