RESUMEN
Beta Thalassemia is the most prevalent and well-studied single gene disorder in Iran. Here, we investigated the spectrum of HBB gene mutations, identified among 2315 patients, referred to a reference thalassemia clinic in Tehran, on the basis of suspicion to thalassemia major or intermedia. The patients were homozygous or compound heterozygous for HBB mutations, and were referred from various Iranian provinces, during 15 years (2001- 2016). The HBB mutations were classified based on their frequency, and the result was compared to a meta-analysis of 14,293 beta thalassemia cases in the Iranian population, within the same time period. The mutation spectrum in this study contained 43 HBB mutations, compared to the 90, presented by the meta-analysis. Similar to the meta-analysis, IVSII-1 (G > A) and IVSI-5 (G > C) were the most common mutations in this study. These two comprised 62.40% of the total HBB mutant alleles in the studied population, comparable to 51.92% of that in the meta-analysis. IVSII-1 (G > A) and IVSI-5 (G > C), followed by 17 other mutations that had frequencies ranging from 0.15% to 5.44%, were among the 20 common HBB mutations in Iran and neighboring countries, according to the meta-analysis. This study provided further evidence to support the spectrum of the most common HBB mutations in the Iranian population.
Asunto(s)
Talasemia , Talasemia beta , Humanos , Talasemia beta/diagnóstico , Talasemia beta/epidemiología , Talasemia beta/genética , Irán/epidemiología , Globinas beta/genética , Mutación , GenotipoRESUMEN
Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.
Asunto(s)
Exoma/genética , Predisposición Genética a la Enfermedad/genética , Pérdida Auditiva/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Irán , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Secuenciación del Exoma/métodos , Adulto JovenRESUMEN
The advent of high-throughput sequencing technologies has led to an exponential increase in the identification of novel disease-causing genes in highly heterogeneous diseases. A novel frameshift mutation in CNKSR1 gene was detected by Next-Generation Sequencing (NGS) in an Iranian family with syndromic autosomal recessive intellectual disability (ARID). CNKSR1 encodes a connector enhancer of kinase suppressor of Ras 1, which acts as a scaffold component for receptor tyrosine kinase in mitogen-activated protein kinase (MAPK) cascades. CNKSR1 interacts with proteins which have already been shown to be associated with intellectual disability (ID) in the MAPK signaling pathway and promotes cell migration through RhoA-mediated c-Jun N-terminal kinase (JNK) activation. Lack of CNKSR1 transcripts and protein was observed in lymphoblastoid cells derived from affected patients using qRT-PCR and western blot analysis, respectively. Furthermore, RNAi-mediated knockdown of cnk, the CNKSR1 orthologue in Drosophila melanogaster brain, led to defects in eye and mushroom body (MB) structures. In conclusion, our findings support the possible role of CNKSR1 in brain development which can lead to cognitive impairment.
Asunto(s)
Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adolescente , Adulto , Animales , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Familia , Femenino , Genes Recesivos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Discapacidad Intelectual/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Irán , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mutación , Linaje , Transducción de Señal , SíndromeRESUMEN
Background: PI3K/Akt/mTOR pathway is a crucial pathway in the angiogenesis, tumour growth and cell differentiation of several cancers. The PI3K and KIT genes are key genes of this pathway. Previous studies have reported the importance of these genes in the development of gastrointestinal carcinoma, leukaemia, and melanomas. The role of mutations and overexpression of PI3K and KIT genes in breast cancer has been previously proved. This study investigates the correlation between PI3K and KIT gene mutations in sporadic breast cancer. Methods: Multiplex Ligation-dependent Probe Amplification (MLPA) technique was used to determine the Copy Number Variation (CNV) of PI3K and KIT genes in 34 breast cancer tumours and PCR-sequencing was used to detect the mutation in PI3K exons 9 and 20. Results: Our results reported that 27% of patients had CNV of the KIT gene; whereas, 20% and 17.5% of patients, had mutation and CNV in the PI3K gene, respectively. We did not found a significant correlation between the mutations of PI3K and KIT genes. Conclusion: About two-tenth of the patients revealed CNV and lesser than two-tenth indicated mutation in the PI3K gene, whereas one-third of the patients demonstrated CNV in the KIT gene. Thus, administration of the PI3K and KIT gene inhibitor drugs might be proposed to suppress breast cancer in patients with mutation and CNV of each of these individual genes.
RESUMEN
Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.
Asunto(s)
Etnicidad/genética , Evolución Molecular , Exoma/genética , Variación Genética/genética , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Estudios de Casos y Controles , Conexina 26 , Conexinas , Frecuencia de los Genes , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Humanos , FilogeniaRESUMEN
BACKGROUND: Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. DESIGN: Using a custom targeted genomic enrichment (TGE) panel, we simultaneously interrogated all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. RESULTS: We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23 and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and three novel CNV. Several variants represent founder mutations. CONCLUSION: This study attests to the power of TGE and massively parallel sequencing as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery.
Asunto(s)
Pérdida Auditiva/genética , Conexina 26 , Conexinas , Consanguinidad , Efecto Fundador , Frecuencia de los Genes , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva/patología , Humanos , IránRESUMEN
MYO15A is located at the DFNB3 locus on chromosome 17p11.2, and encodes myosin-XV, an unconventional myosin critical for the formation of stereocilia in hair cells of cochlea. Recessive mutations in this gene lead to profound autosomal recessive nonsyndromic hearing loss (ARNSHL) in humans and the shaker2 (sh2) phenotype in mice. Here, we performed a study on 140 Iranian families in order to determine mutations causing ARNSHL. The families, who were negative for mutations in GJB2, were subjected to linkage analysis. Eight of these families showed linkage to the DFNB3 locus, suggesting a MYO15A mutation frequency of 5.71% in our cohort of Iranian population. Subsequent sequencing of the MYO15A gene led to identification of 7 previously unreported mutations, including 4 missense mutations, 1 nonsense mutation, and 2 deletions in different regions of the myosin-XV protein.
Asunto(s)
Sordera/genética , Genes Recesivos , Mutación , Miosinas/genética , Mapeo Cromosómico , Cromosomas Humanos Par 17 , Conexina 26 , Conexinas , Femenino , Humanos , Irán , Masculino , LinajeRESUMEN
Hearing loss is the most common sensory disorder worldwide and affects 1 of every 500 newborns. In developed countries, at least 50% of cases are genetic, most often resulting in nonsyndromic deafness (70%), which is usually autosomal recessive (â¼80%). Although the cause of hearing loss is heterogeneous, mutations in GJB2 gene at DFNB1 locus are the major cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) in many populations. Our previous study showed that mutations of GJB2 gene do not contribute to the major genetic load of deafness in the Iranian population (â¼16%). Therefore, to define the importance of other genes in contributing to an ARNSHL phenotype in the Iranian population, we used homozygosity mapping to identify regions of autozygosity-by-descent in 144 families which two or more progeny had ARNSHL but were negative for GJB2 gene mutations. Using flanking or intragenic short-tandem repeat markers for 33 loci we identified 33 different homozygous variations in 10 genes, of which 9 are novel. In aggregate, these data explain â¼40% of genetic background of ARNHSL in the Iranian population.
Asunto(s)
Genes Recesivos , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/genética , Homocigoto , Repeticiones de Microsatélite/genética , Mapeo Cromosómico , Conexina 26 , Conexinas , Familia , Humanos , Irán/epidemiología , MutaciónRESUMEN
Mutations in GJB2 are a major cause of autosomal recessive non-syndromic hearing loss (ARNSHL) in many populations. A single mutation of this gene (35delG) accounts for approximately 70% of GJB2 mutations that are associated with ARNSHL in Caucasians in many European countries and also in Iranian. In this study, we used PCR and restriction digestion to genotype five single nucleotide polymorphisms (SNPs) that define the genetic background of the 35delG mutation over an interval of 98 Kbp that includes the coding and flanking regions of GJB2. Two microsatellite markers, D13S175 and D13S141, were also analyzed in patients and controls. These data suggest that the 35delG mutation originated in northern Iran.
Asunto(s)
Conexinas/genética , Emigración e Inmigración/historia , Pérdida Auditiva/etnología , Pérdida Auditiva/genética , Eliminación de Secuencia/genética , Conexina 26 , Femenino , Genes Recesivos/genética , Genética de Población , Historia Antigua , Humanos , Irán/epidemiología , Masculino , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.
Asunto(s)
Conexinas/genética , Genes Dominantes , Pérdida Auditiva/genética , Mutación , Conexina 26 , Humanos , IránRESUMEN
BACKGROUND: Neurodevelopmental and intellectual impairments are extremely heterogeneous disorders caused by a diverse variety of genes involved in different molecular pathways and networks. Genetic alterations in cilia, highly-conserved organelles with sensorineural and signal transduction roles can compromise their proper functions and lead to so-called "ciliopathies" featuring intellectual disability (ID) or neurodevelopmental disorders as frequent clinical manifestations. Here, we report several Iranian families affected with ID and other ciliopathy-associated features carrying known and novel variants in two ciliary genes; CEP104 and CEP290. METHODS: Whole exome and Targeted exome sequencing were carried out on affected individuals. Lymphoblastoid cell lines (LCLs) derived from the members of affected families were established for two families carrying CEP104 mutations. RNA and protein expression studies were carried out on these cells using qPCR and Western blot, respectively. RESULTS: A novel homozygous variant; NM_025114.3:c.7341_7344dupACTT p.(Ser2449Thrfs*8) and four previously reported homozygous variants; NM_025114.3:c.322C>T p.(Arg108*), NM_025114.3:c.4393C>T p.(Arg1465*), NM_025114.3:c.5668G>T p.(Gly1890*) and NM_025114.3:c.1666dupA p.(Ile556Asnfs*20) were identified in CEP290. In two other families, two novel homozygous variants; NM_014704:c.2356_2357insTT p.(Cys786Phefs*11) and NM_014704:c.1901_1902insT p.(Leu634Phefs*33) were identified in CEP104, another ciliary gene. qPCR and Western blot analyses showed significantly lower levels of CEP104 transcripts and protein in patients compared to heterozygous or normal family members. CONCLUSION: We emphasize on the clinical variability and pleiotropic phenotypes due to variants of these genes. In conclusion, our findings support the pivotal role of these genes resulting in cognitive and neurodevelopmental features.
Asunto(s)
Discapacidad Intelectual , Antígenos de Neoplasias , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Exoma , Humanos , Discapacidad Intelectual/genética , Irán , Mutación , Linaje , Secuenciación del ExomaRESUMEN
OBJECTIVES: We investigated the cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) that segregated in 2 consanguineous Iranian families. METHODS: Otologic and audiometric examinations were performed on affected members of each family. Genome-wide parametric multipoint linkage mapping using a recessive model was performed with Affymetrix 50K GeneChips or short tandem repeat polymorphisms. Direct sequencing was used to confirm the causative mutation in each family. RESULTS: In 2 Iranian families, L-1651 and L-8600606, with ARNSHL that mapped to the DFNB7/11 locus, homozygosity for a reported splice site mutation (c.776+1G>A), and a novel deletion (c.1589_1590delCT; p.S530*) were identified in the TMC1 gene, respectively. CONCLUSIONS: Consistent with the previously reported phenotype in DFNB7/11 families, the 2 Iranian families had segregated congenital, profound hearing impairment. However, in family L-1651, one affected family member (IV:3) has milder hearing impairment than expected, suggesting a potential genetic modifier effect. These results indicate that DFNB7/11 is a common form of genetic hearing loss in Iran, because this population is the source of 6 of the 29 TMC1 mutations reported worldwide.
Asunto(s)
Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Mutación , Mapeo Cromosómico , Computadoras de Mano , Consanguinidad , Sordera/congénito , Sordera/genética , Estudio de Asociación del Genoma Completo , Genotipo , Pérdida Auditiva/congénito , Humanos , Irán , Repeticiones de Microsatélite , Linaje , Polimorfismo de Nucleótido Simple , Sitios de Empalme de ARN/genética , Análisis de Secuencia de ADN , Eliminación de SecuenciaRESUMEN
Mutations in the SLC26A4 gene at the DFNB4 locus are responsible for Pendred syndrome and non-syndromic hereditary hearing loss (DFNB4). This study included 80 nuclear families with two or more siblings segregating presumed autosomal recessive hearing loss. All deaf persons tested negative for mutations in GJB2 at the DFNB1 locus and were, therefore, screened for autozygosity by descent (ABD) using short tandem repeat polymorphisms (STRPs) that flanked SLC26A4. In 12 families, homozygosity for STRPs suggested possible ABD in this genomic region. Affected individuals in five families had a positive perchlorate discharge test. Sequence analysis of SLC26A4 identified ten mutations in eight families (T420I, 1197delT, G334V, R409H, T721M, R79X, S448L, L597S, 965insA and L445W), of which, four are novel (T420I, G334V, 965insA and R79X). These results imply that Pendred syndrome is the most prevalent form of syndromic hereditary hearing loss in Iran.
Asunto(s)
Pérdida Auditiva/genética , Proteínas de Transporte de Membrana/genética , Transporte Biológico/genética , Conexina 26 , Conexinas , Pérdida Auditiva/congénito , Homocigoto , Humanos , Irán , Repeticiones de Microsatélite , Mutación/genética , Análisis de Secuencia de ADN , Transportadores de Sulfato , Síndrome , Acueducto Vestibular/patologíaRESUMEN
Mutations in the GJB2 gene encoding connexin 26 (Cx26) cause autosomal recessive and rarely dominant nonsyndromic sensorineural hearing loss as well as asyndromic hearing impairment with skin problems. A dominant GJB2 mutation, c.389Gâ¯>â¯T (p.G130V), has been reported previously in association with hearing impairment and palmoplantar keratoderm. Here we report the first de novo G130V mutation of GJB2 gene in a sporadic case of hearing loss in a consanguineous Iranian family which is not associated with skin disorder.
Asunto(s)
Conexinas/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Adolescente , Conexina 26 , Consanguinidad , Femenino , Heterocigoto , Humanos , Irán , Queratodermia Palmoplantar , Masculino , Linaje , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Diagnosis of hereditary hearing loss (HHL) as a heterogeneous disorder is very important especially in countries with high rates of consanguinity where the autosomal recessive pattern of inheritance is prevalent. Techniques such as next-generation sequencing, a comprehensive genetic test using targeted genomic enrichment and massively parallel sequencing (TGE + MPS), have made the diagnosis more cost-effective. The aim of this study was to determine HHL variants with comprehensive genetic testing in our country. METHODS: Fifty GJB2 negative individuals with HHL were referred to the Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, one of the reference diagnostic genetic laboratories in Iran, during a 3-year period between 2014 and 2017. They were screened with the OtoSCOPE test, the targeted genomic enrichment and massively parallel sequencing (TGE + MPS) platform after a detailed history had been taken along with clinical evaluation. RESULTS: Among 32 out of 50 GJB2 negative patients (64%), 34 known pathogenic and novel variants were detected of which 16 (47%) were novel, identified in 10 genes of which the most prevalent were CDH23, MYO7A and MYO15A. CONCLUSION: These results provide a foundation from which to make appropriate recommendations for the use of comprehensive genetic testing in the evaluation of Iranian patients with hereditary hearing loss.
RESUMEN
BACKGROUND: Possible mechanisms of Alzheimer Disease (AD) such as inflammation and oxidative stresses in the brain led us to investigate potential AD therapeutics of Melilotus officinalis, an herbal extract, with possible role as an anti-inflammatory and anti-oxidant agent. Among different genes which had important role in Sporadic AD (SAD), three genes including DAXX, NFkB and VEGF have shown significant statistical diversity in the brains of Alzheimer patients. METHODS: These genes were chosen to be investigated for neuroprotective effects of the extract by comparing the expression level in the hippocampus of Sporadic AD (SAD) rat model using quantitative polymerase chain reaction (qPCR) in the treated and untreated groups. In addition, therapeutic effects at the behavioral, learning and memory level by Morris Water Maze (MWM) test were investigated. RESULTS: The results represented significant decreased expression in Daxx, Nfkb and Vegf genes in the SAD rat's model treated with the herbal extract compared to the Streptozotocin-induced (STZ-induced) rats. Furthermore, no significant changes were seen in swimming distance and time for finding the hidden platform in the herbal-treated compared to the STZ-induced group. In memory level, no significant changes were observed among treated and untreated groups. CONCLUSION: It seems that the herbal extract may have significant effect on Alzheimer-related gene expression changes but not on clinical levels.
RESUMEN
Purpose: Sporadic Alzheimer's disease (AD) accounts for over 95% of cases. Possible mechanisms of AD such as inflammation and oxidative stresses in the brain motivate researchers to follow many therapies which would be effective, especially in the early stages of the disease. IMOD, the herbal extract of R. Canina, T. Vulgare and U. Dioica plant species enriched with selenium, has anti-inflammatory, immunoregulatory and protective effects against oxidative stress. Methods: In this study three AD-related genes, DAXX, NFκß and VEGF, were chosen as candidate to investigate the neuroprotective effect of the extract by comparing their expression levels in the hippocampus of rat model of sporadic AD, using qPCR in the herbal-treated and control groups. The therapeutic effects on learning and memory levels were evaluated by Morris Water Maze (MWM) test. Results: Gene expression results were indicative of significant up-regulation of Vegf in rat's hippocampus after treatment with the herbal extract comparing to model group (P-value= 0.001). The MWM results showed significant changes in path length and time for finding the hidden platform in all groups during test and the same change in the treated comparing to the control group in memory level. Conclusion: It could be concluded that the herbal extract may have significant effect on gene expression but not on behavioral level.
RESUMEN
Purpose: Alzheimer's disease (AD) is pathologically defined by the presence of amyloid plaques and tangles in the brain, therefore, any drug or compound with potential effect on lowering amyloid plaques, could be noticed for AD management especially in the primary phases of the disease. Ectoine constitutes a group of small molecule chaperones (SMCs). SMCs inhibit proteins and other changeable macromolecular structures misfolding from environmental stresses. Ectoine has been reported successfully prohibit insulin amyloid formation in vitro. Methods: We selected eight genes, DAXX, NFκß, VEGF, PSEN1, MTAP2, SYP, MAPK3 and TNFα genes which had previously showed significant differential expression in Alzheimer human brain and STZ- rat model. We considered the neuroprotective efficacy by comparing the expression of candidate genes levels in the hippocampus of rat model of Sopradic Alzheimer's disease (SAD), using qPCR in compound-treated and control groups as well as therapeutic effects at learning and memory levels by using Morris Water Maze (MWM) test. Results: Our results showed significant down-regulation of Syp, Mapk3 and Tnfα and up-regulation of Vegf in rat's hippocampus after treatment with ectoine comparing to the STZ-induced group. In MWM, there was no significant change in swimming distance and time for finding the hidden platform in treated comparing to STZ-induced group. In addition, it wasn't seen significant change in compound-treated comparing to STZ-induced and control groups in memory level. Conclusion: It seems this compound may have significant effect on expression level of some AD- related genes but not on clinical levels.
RESUMEN
A significant contribution to the causes of hereditary hearing impairment comes from genetic factors. More than 120 genes and 160 loci have been identified to be involved in hearing impairment. Given that consanguine populations are more vulnerable to most inherited diseases, such as hereditary hearing loss (HHL), the genetic picture of HHL among the Iranian population, which consists of at least eight ethnic subgroups with a high rate of intermarriage, is expected to be highly heterogeneous. Using an electronic literature review through various databases such as PubMed, MEDLINE, and Scopus, we review the current picture of HHL in Iran. In this review, we present more than 39 deafness genes reported to cause non-syndromic HHL in Iran, of which the most prevalent causative genes include GJB2, SLC26A4, MYO15A, and MYO7A. In addition, we highlight some of the more common genetic causes of syndromic HHL in Iran. These results are of importance for further investigation and elucidation of the molecular basis of HHL in Iran and also for developing a national diagnostic tool tailored to the Iranian context enabling early and efficient diagnosis of hereditary hearing impairment.
Asunto(s)
Consanguinidad , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/genética , Conexina 26 , Conexinas/genética , Atención a la Salud , Pruebas Genéticas , Humanos , Irán/epidemiología , Proteínas de Transporte de Membrana/genética , Mutación , Miosina VIIa , Miosinas/genética , Transportadores de SulfatoRESUMEN
In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score = 3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which specifically associates with the ends of growing MTs. These proteins regulate MT dynamic behavior and are important for MT-mediated transport over the length of axons and dendrites. As such, CLIP1 may have a role in neuronal development. We studied lymphoblastoid and skin fibroblast cell lines established from healthy and affected patients. RT-PCR and western blot analyses showed the absence of CLIP1 transcript and protein in lymphoblastoid cells derived from affected patients. Furthermore, immunofluorescence analyses showed MT plus-end staining only in fibroblasts containing the wild-type (and not the mutant) CLIP1 protein. Collectively, our data suggest that defects in CLIP1 may lead to ARID.