Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Microbiol ; 79(2): 342-58, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21219456

RESUMEN

Oxidation of methionine to methionine sulphoxide (MetSO) may lead to loss of molecular integrity and function. This oxidation can be 'repaired' by methionine sulphoxide reductases (MSRs), which reduce MetSO back to methionine. Two structurally unrelated classes of MSRs, MSRA and MSRB, show stereoselectivity towards the S and the R enantiomer of the sulphoxide respectively. Interestingly, these enzymes were even maintained throughout evolution in anaerobic organisms. Here, the activity and the nuclear magnetic resonance (NMR) structure of MTH711, a zinc containing MSRB from the thermophilic, methanogenic archaebacterium Methanothermobacter thermoautotrophicus, are described. The structure appears more rigid as compared with similar MSRBs from aerobic and mesophilic organisms. No significant structural differences between the oxidized and the reduced MTH711 state can be deduced from our NMR data. A stable sulphenic acid is formed at the catalytic Cys residue upon oxidation of the enzyme with MetSO. The two non-zinc-binding cysteines outside the catalytic centre are not necessary for activity of MTH711 and are not situated close enough to the active-site cysteine to serve in regenerating the active centre via the formation of an intramolecular disulphide bond. These findings imply a reaction cycle that differs from that observed for other MSRBs.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Methanobacteriaceae/enzimología , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Metionina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
2.
Dev Cell ; 47(5): 592-607.e6, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513302

RESUMEN

Regulatory T cells (Treg) are necessary to maintain immunological tolerance and are key players in the control of autoimmune disease susceptibility. Expression of the transcription factor FOXP3 is essential for differentiation of Treg cells and indispensable for their suppressive function. However, there is still a lack of knowledge about the mechanisms underlying its regulation. Here, we demonstrate that pro-autophagy protein AMBRA1 is also a key modulator of T cells, regulating the complex network that leads to human Treg differentiation and maintenance. Indeed, through its ability to interact with the phosphatase PP2A, AMBRA1 promotes the stability of the transcriptional activator FOXO3, which, in turn, triggers FOXP3 transcription. Furthermore, we found that AMBRA1 plays a significant role in vivo by regulating Treg cell induction in mouse models of both tumor growth and multiple sclerosis, thus highlighting the role of AMBRA1 in the control of immune homeostasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular , Linfocitos T/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HeLa , Homeostasis , Humanos , Células Jurkat , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Proteína Fosfatasa 2/metabolismo , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA