Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Faraday Discuss ; 204: 419-428, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-28766624

RESUMEN

Dynamic atomic force microscopy measurements are reported that provide evidence for the presence of long-range repulsion in molecular self-assembly on a bulk insulator surface. We present the structures formed from four different benzoic acid derivatives on the (10.4) cleavage plane of calcite kept in ultra-high vacuum. These molecules have in common that they self-assemble into molecular stripes when deposited onto the surface held at room temperature. For all molecules tested, a detailed analysis of the stripe-to-stripe distance distribution reveals a clear deviation from what would be expected for randomly placed, non-interacting stripes (i.e., geometric distribution). When excluding kinetic effects during growth, this result gives evidence for a long-range repulsion mechanism acting during the assembly of these stripes. The fact that this finding is robust against changes in the molecular structure indicates a generic nature of the observed mechanism, implying a ubiquitous origin such as electrostatic repulsion. Finally, we discuss parameters that might affect the unambiguous observation of this generic repulsion under specific experimental conditions.

2.
Phys Chem Chem Phys ; 19(23): 15172-15176, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28561080

RESUMEN

Molecular electronics has great potential to surpass known limitations in conventional silicon-based technologies. The development of molecular electronics devices requires reliable strategies for connecting functional molecules by wire-like structures. To this end, diacetylene polymerization has been discussed as a very promising approach for contacting single molecules with a conductive polymer chain. A major challenge for future device fabrication is transferring this method to bulk insulator surfaces, which are mandatory to decouple the electronic structure of the functional molecules from the support surface. Here, we provide experimental evidence for diacetylene polymerization of 3,3'-(1,3-butadiyne-1,4-diyl)bisbenzoic acid precursors on the (10.4) surface of calcite, a bulk insulator with a band gap of around 6 eV. When deposited on the surface held at room temperature, ordered islands with a (1 × 3) superstructure are observed using dynamic atomic force microscopy. A distinct change is revealed upon heating the substrate to 485 K. After heating, molecular stripes with a characteristic inner structure are formed that excellently match the expected diacetylene polymer chains in appearance and repeat distance. The corresponding density functional theory computations reveal molecular-level bonding patterns of both the (1 × 3) superstructure and the formed striped structure, confirming the assignment of on-surface diacetylene polymerization. Transferring the concept of using diacetylene polymerization for creating conductive connections to bulk insulator surfaces paves the way towards application-relevant systems for future molecular electronic devices.

3.
Phys Rev Lett ; 110(14): 146101, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-25167009

RESUMEN

The water-TiO(2) interaction is of paramount importance for many processes occurring on TiO(2), and the rutile TiO(2)(110)-(1×1) surface has often been considered as a test case. Yet, no consensus has been reached whether the well-studied surface O vacancies on the terraces are the only active sites for water dissociation on rutile TiO(2)(110)-(1 × 1), or whether another channel for the creation of H adatoms exists. Here we use high-resolution scanning tunneling microscopy and density functional theory calculations to tackle this long-standing question. Evidence is presented that a second water dissociation channel exists on the surfaces of vacuum-annealed TiO(2)(110) crystals that is associated with the ⟨111⟩ step edges. This second water dissociation channel can be suppressed by blocking of the ⟨111⟩ step edges using ethanol.

4.
Phys Rev Lett ; 109(15): 155501, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23102329

RESUMEN

The rutile TiO2(110) surface is the most studied surface of titania and considered as a prototype of transition metal oxide surfaces. Reactions on flat TiO2(110)-(1×1) surfaces are well studied, but the processes occurring on the step edges have barely been considered. Based on scanning tunneling microscopy studies, we here present experimental evidence for the existence of O vacancies along the [11¯1](R) step edges (O(S) vac.'s) on rutile TiO(2)(110). Both the distribution of bridging O vacancies on the terraces and temperature-programed reaction experiments of ethanol-covered TiO(2)(110) point to the existence of the O(S) vac.'s. Based on experiments and density functional theory calculations, we show that O(S) vac.'s are reactive sites for ethanol dissociation via O-H bond scission. Implications of these findings are discussed.

5.
Phys Rev Lett ; 108(23): 236103, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-23003975

RESUMEN

We have studied vicinal TiO2(110) surfaces by high-resolution scanning tunneling microscopy and density functional theory calculations. On TiO2 surfaces characterized by a high density of <111> steps, scanning tunneling microscopy reveals a high density of oxygen-deficient strandlike adstructures. With the help of density functional theory calculations we develop a complete structural model for the entire strand and demonstrate these adstructures to be more stable than an equivalent amount of bulk defects such as Ti interstitials. We argue that strands can form particularly easy on stepped surfaces because building material is available at step sites. The strands on TiO2(110) represent point defects that are densely packed into ordered adstructures.

6.
Phys Rev Lett ; 104(25): 259703; author reply 259704, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20867422
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA