Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Annu Rev Biochem ; 84: 813-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25621510

RESUMEN

Phylum Apicomplexa comprises a large group of obligate intracellular parasites of high medical and veterinary importance. These organisms succeed intracellularly by effecting remarkable changes in a broad range of diverse host cells. The transformation of the host erythrocyte is particularly striking in the case of the malaria parasite Plasmodium falciparum. P. falciparum exports hundreds of proteins that mediate a complex cellular renovation marked by changes in the permeability, rigidity, and cytoadherence properties of the host erythrocyte. The past decade has seen enormous progress in understanding the identity and function of these exported effectors, as well as the mechanisms by which they are trafficked into the host cell. Here we review these advances, place them in the context of host manipulation by related apicomplexans, and propose key directions for future research.


Asunto(s)
Eritrocitos/parasitología , Plasmodium/fisiología , Animales , Apicomplexa/clasificación , Apicomplexa/fisiología , Humanos , Malaria/inmunología , Malaria/parasitología , Señales de Clasificación de Proteína , Proteínas/metabolismo , Infecciones por Protozoos/inmunología , Infecciones por Protozoos/parasitología , Proteínas Protozoarias/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(33): e2308676120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552754

RESUMEN

Malaria parasites uniquely depend on protein secretion for their obligate intracellular lifestyle but approaches for dissecting Plasmodium-secreted protein functions are limited. We report knockER, a unique DiCre-mediated knock-sideways approach to sequester secreted proteins in the ER by inducible fusion with a KDEL ER-retrieval sequence. We show conditional ER sequestration of diverse proteins is not generally toxic, enabling loss-of-function studies. We employed knockER in multiple Plasmodium species to interrogate the trafficking, topology, and function of an assortment of proteins that traverse the secretory pathway to diverse compartments including the apicoplast (ClpB1), rhoptries (RON6), dense granules, and parasitophorous vacuole (EXP2, PTEX150, HSP101). Taking advantage of the unique ability to redistribute secreted proteins from their terminal destination to the ER, we reveal that vacuolar levels of the PTEX translocon component HSP101 but not PTEX150 are maintained in excess of what is required to sustain effector protein export into the erythrocyte. Intriguingly, vacuole depletion of HSP101 hypersensitized parasites to a destabilization tag that inhibits HSP101-PTEX complex formation but not to translational knockdown of the entire HSP101 pool, illustrating how redistribution of a target protein by knockER can be used to query function in a compartment-specific manner. Collectively, our results establish knockER as a unique tool for dissecting secreted protein function with subcompartmental resolution that should be widely amenable to genetically tractable eukaryotes.


Asunto(s)
Plasmodium falciparum , Plasmodium , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Plasmodium/metabolismo , Transporte de Proteínas , Transporte Biológico , Eritrocitos/metabolismo
3.
Nature ; 561(7721): 70-75, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30150771

RESUMEN

The putative Plasmodium translocon of exported proteins (PTEX) is essential for transport of malarial effector proteins across a parasite-encasing vacuolar membrane into host erythrocytes, but the mechanism of this process remains unknown. Here we show that PTEX is a bona fide translocon by determining structures of the PTEX core complex at near-atomic resolution using cryo-electron microscopy. We isolated the endogenous PTEX core complex containing EXP2, PTEX150 and HSP101 from Plasmodium falciparum in the 'engaged' and 'resetting' states of endogenous cargo translocation using epitope tags inserted using the CRISPR-Cas9 system. In the structures, EXP2 and PTEX150 interdigitate to form a static, funnel-shaped pseudo-seven-fold-symmetric protein-conducting channel spanning the vacuolar membrane. The spiral-shaped AAA+ HSP101 hexamer is tethered above this funnel, and undergoes pronounced compaction that allows three of six tyrosine-bearing pore loops lining the HSP101 channel to dissociate from the cargo, resetting the translocon for the next threading cycle. Our work reveals the mechanism of P. falciparum effector export, and will inform structure-based design of drugs targeting this unique translocon.


Asunto(s)
Microscopía por Crioelectrón , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura , Animales , Eritrocitos/metabolismo , Eritrocitos/parasitología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Modelos Biológicos , Modelos Moleculares , Terapia Molecular Dirigida/tendencias , Movimiento , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Proteínas Protozoarias/química , Vacuolas/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34446549

RESUMEN

The RhopH complex is implicated in malaria parasites' ability to invade and create new permeability pathways in host erythrocytes, but its mechanisms remain poorly understood. Here, we enrich the endogenous RhopH complex in a native soluble form, comprising RhopH2, CLAG3.1, and RhopH3, directly from parasite cell lysates and determine its atomic structure using cryo-electron microscopy (cryo-EM), mass spectrometry, and the cryoID program. CLAG3.1 is positioned between RhopH2 and RhopH3, which both share substantial binding interfaces with CLAG3.1 but make minimal contacts with each other. The forces stabilizing individual subunits include 13 intramolecular disulfide bonds. Notably, CLAG3.1 residues 1210 to 1223, previously predicted to constitute a transmembrane helix, are embedded within a helical bundle formed by residues 979 to 1289 near the C terminus of CLAG3.1. Buried in the core of the RhopH complex and largely shielded from solvent, insertion of this putative transmembrane helix into the erythrocyte membrane would likely require a large conformational rearrangement. Given the unusually high disulfide content of the complex, it is possible that such a rearrangement could be initiated by the breakage of allosteric disulfide bonds, potentially triggered by interactions at the erythrocyte membrane. This first direct observation of an exported Plasmodium falciparum transmembrane protein-in a soluble, trafficking state and with atomic details of buried putative membrane-insertion helices-offers insights into the assembly and trafficking of RhopH and other parasite-derived complexes to the erythrocyte membrane. Our study demonstrates the potential the endogenous structural proteomics approach holds for elucidating the molecular mechanisms of hard-to-isolate complexes in their native, functional forms.


Asunto(s)
Membrana Eritrocítica/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Permeabilidad de la Membrana Celular , Microscopía por Crioelectrón , Membrana Eritrocítica/parasitología , Humanos , Modelos Moleculares , Nutrientes/metabolismo , Conformación Proteica , Proteómica , Proteínas Protozoarias/fisiología , Proteínas Protozoarias/ultraestructura , Relación Estructura-Actividad
5.
Nat Methods ; 17(1): 79-85, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768063

RESUMEN

X-ray crystallography often requires non-native constructs involving mutations or truncations, and is challenged by membrane proteins and large multicomponent complexes. We present here a bottom-up endogenous structural proteomics approach whereby near-atomic-resolution cryo electron microscopy (cryoEM) maps are reconstructed ab initio from unidentified protein complexes enriched directly from the endogenous cellular milieu, followed by identification and atomic modeling of the proteins. The proteins in each complex are identified using cryoID, a program we developed to identify proteins in ab initio cryoEM maps. As a proof of principle, we applied this approach to the malaria-causing parasite Plasmodium falciparum, an organism that has resisted conventional structural-biology approaches, to obtain atomic models of multiple protein complexes implicated in intraerythrocytic survival of the parasite. Our approach is broadly applicable for determining structures of undiscovered protein complexes enriched directly from endogenous sources.


Asunto(s)
Microscopía por Crioelectrón/métodos , Eritrocitos/parasitología , Procesamiento de Imagen Asistido por Computador/métodos , Complejos Multiproteicos/química , Plasmodium falciparum/metabolismo , Proteómica/métodos , Proteínas Protozoarias/química , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Espectrometría de Masas , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , Plasmodium falciparum/aislamiento & purificación , Conformación Proteica , Proteínas Protozoarias/ultraestructura
6.
PLoS Pathog ; 17(4): e1009394, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33793667

RESUMEN

Obligate intracellular malaria parasites reside within a vacuolar compartment generated during invasion which is the principal interface between pathogen and host. To subvert their host cell and support their metabolism, these parasites coordinate a range of transport activities at this membrane interface that are critically important to parasite survival and virulence, including nutrient import, waste efflux, effector protein export, and uptake of host cell cytosol. Here, we review our current understanding of the transport mechanisms acting at the malaria parasite vacuole during the blood and liver-stages of development with a particular focus on recent advances in our understanding of effector protein translocation into the host cell by the Plasmodium Translocon of EXported proteins (PTEX) and small molecule transport by the PTEX membrane-spanning pore EXP2. Comparison to Toxoplasma gondii and other related apicomplexans is provided to highlight how similar and divergent mechanisms are employed to fulfill analogous transport activities.


Asunto(s)
Transporte Biológico/fisiología , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/inmunología , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Animales , Humanos , Malaria/metabolismo
7.
J Enzyme Inhib Med Chem ; 37(1): 1320-1326, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35514163

RESUMEN

Malaria is caused by infection with protozoan parasites of the Plasmodium genus, which is part of the phylum Apicomplexa. Most organisms in this phylum contain a relic plastid called the apicoplast. The apicoplast genome is replicated by a single DNA polymerase (apPOL), which is an attractive target for anti-malarial drugs. We screened small-molecule libraries (206,504 compounds) using a fluorescence-based high-throughput DNA polymerase assay. Dose/response analysis and counter-screening identified 186 specific apPOL inhibitors. Toxicity screening against human HepaRG human cells removed 84 compounds and the remaining were subjected to parasite killing assays using chloroquine resistant P. falciparum parasites. Nine compounds were potent inhibitors of parasite growth and may serve as lead compounds in efforts to discover novel malaria drugs.


Asunto(s)
Antimaláricos , Apicoplastos , Malaria , Antimaláricos/farmacología , Apicoplastos/genética , ADN , ADN Polimerasa Dirigida por ADN , Humanos , Plasmodium falciparum , Proteínas Protozoarias/genética
8.
Cell Microbiol ; 22(5): e13168, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31990132

RESUMEN

Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single-pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR-DOZI-aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S-transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore-forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.


Asunto(s)
Antígenos de Protozoos/inmunología , Parásitos/genética , Parásitos/metabolismo , Vacuolas/parasitología , Animales , Antígenos de Protozoos/genética , Edición Génica , Malaria/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Vacuolas/metabolismo
9.
Nature ; 511(7511): 592-5, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25043010

RESUMEN

To mediate its survival and virulence, the malaria parasite Plasmodium falciparum exports hundreds of proteins into the host erythrocyte. To enter the host cell, exported proteins must cross the parasitophorous vacuolar membrane (PVM) within which the parasite resides, but the mechanism remains unclear. A putative Plasmodium translocon of exported proteins (PTEX) has been suggested to be involved for at least one class of exported proteins; however, direct functional evidence for this has been elusive. Here we show that export across the PVM requires heat shock protein 101 (HSP101), a ClpB-like AAA+ ATPase component of PTEX. Using a chaperone auto-inhibition strategy, we achieved rapid, reversible ablation of HSP101 function, resulting in a nearly complete block in export with substrates accumulating in the vacuole in both asexual and sexual parasites. Surprisingly, this block extended to all classes of exported proteins, revealing HSP101-dependent translocation across the PVM as a convergent step in the multi-pathway export process. Under export-blocked conditions, association between HSP101 and other components of the PTEX complex was lost, indicating that the integrity of the complex is required for efficient protein export. Our results demonstrate an essential and universal role for HSP101 in protein export and provide strong evidence for PTEX function in protein translocation into the host cell.


Asunto(s)
Eritrocitos/parasitología , Proteínas de Choque Térmico/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Estadios del Ciclo de Vida/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Transporte de Proteínas , Vacuolas/parasitología
10.
Cell Microbiol ; 20(10): e12868, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29900649

RESUMEN

Because Plasmodium falciparum replicates inside of a parasitophorous vacuole (PV) within a human erythrocyte, parasite egress requires the rupture of two limiting membranes. Parasite Ca2+ , kinases, and proteases contribute to efficient egress; their coordination in space and time is not known. Here, the kinetics of parasite egress were linked to specific steps with specific compartment markers, using live-cell microscopy of parasites expressing PV-targeted fluorescent proteins, and specific egress inhibitors. Several minutes before egress, under control of parasite [Ca2+ ]i , the PV began rounding. Then after ~1.5 min, under control of PfPKG and SUB1, there was abrupt rupture of the PV membrane and release of vacuolar contents. Over the next ~6 min, there was progressive vacuolar membrane deterioration simultaneous with erythrocyte membrane distortion, lasting until the final minute of the egress programme when newly formed parasites mobilised and erythrocyte membranes permeabilised and then ruptured-a dramatic finale to the parasite cycle of replication.


Asunto(s)
Membrana Eritrocítica/parasitología , Eritrocitos/patología , Eritrocitos/parasitología , Plasmodium falciparum/crecimiento & desarrollo , Vacuolas/parasitología , Calcio/metabolismo , Colorantes Fluorescentes , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Plasmodium falciparum/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Vacuolas/metabolismo
11.
Cell Microbiol ; 19(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28067475

RESUMEN

The malaria parasite exports numerous proteins into its host red blood cell (RBC). The trafficking of these exported effectors is complex. Proteins are first routed through the secretory system, into the parasitophorous vacuole (PV), a membranous compartment enclosing the parasite. Proteins are then translocated across the PV membrane in a process requiring ATP and unfolding. Once in the RBC compartment the exported proteins are then refolded and further trafficked to their final localizations. Chaperones are important in the unfolding and refolding processes. Recently, it was suggested that the parasite TRiC chaperonin complex is exported, and that it is involved in trafficking of exported effectors. Using a parasite-specific antibody and epitope-tagged transgenic parasites we could observe no export of Plasmodium TRiC into the RBC. We tested the importance of the parasite TRiC by creating a regulatable knockdown line of the TRiC-θ subunit. Loss of the parasite TRiC-θ led to a severe growth defect in asexual development, but did not alter protein export into the RBC. These observations indicate that the TRiC proteins play a critical role in parasite biology, though their function, within the parasite, appears unrelated to protein trafficking in the RBC compartment.


Asunto(s)
Chaperoninas/metabolismo , Citosol/metabolismo , Malaria Falciparum/patología , Complejos Multiproteicos/metabolismo , Plasmodium falciparum/patogenicidad , Membrana Celular/metabolismo , Eritrocitos/parasitología , Regulación de la Expresión Génica/genética , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Replegamiento Proteico , Transporte de Proteínas/fisiología , Vacuolas/parasitología
12.
PLoS Pathog ; 10(3): e1004025, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651769

RESUMEN

Apicomplexans facilitate host cell invasion through formation of a tight-junction interface between parasite and host plasma membranes called the moving junction (MJ). A complex of the rhoptry neck proteins RONs 2/4/5/8 localize to the MJ during invasion where they are believed to provide a stable anchoring point for host penetration. During the initiation of invasion, the preformed MJ RON complex is injected into the host cell where RON2 spans the host plasma membrane while RONs 4/5/8 localize to its cytosolic face. While much attention has been directed toward an AMA1-RON2 interaction supposed to occur outside the cell, little is known about the functions of the MJ RONs positioned inside the host cell. Here we provide a detailed analysis of RON5 to resolve outstanding questions about MJ complex organization, assembly and function during invasion. Using a conditional knockdown approach, we show loss of RON5 results in complete degradation of RON2 and mistargeting of RON4 within the parasite secretory pathway, demonstrating that RON5 plays a key role in organization of the MJ RON complex. While RON8 is unaffected by knockdown of RON5, these parasites are unable to invade new host cells, providing the first genetic demonstration that RON5 plays a critical role in host cell penetration. Although invasion is not required for injection of rhoptry effectors into the host cytosol, parasites lacking RON5 also fail to form evacuoles suggesting an intact MJ complex is a prerequisite for secretion of rhoptry bulb contents. Additionally, while the MJ has been suggested to function in egress, disruption of the MJ complex by RON5 depletion does not impact this process. Finally, functional complementation of our conditional RON5 mutant reveals that while proteolytic separation of RON5 N- and C-terminal fragments is dispensable, a portion of the C-terminal domain is critical for RON2 stability and function in invasion.


Asunto(s)
Membrana Celular/parasitología , Interacciones Huésped-Parásitos/fisiología , Proteínas Protozoarias/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Toxoplasmosis/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/microbiología , Técnicas de Silenciamiento del Gen , Humanos , Toxoplasma/metabolismo
13.
J Biol Chem ; 289(20): 13962-73, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24675080

RESUMEN

Toxoplasma gondii, an apicomplexan parasite prevalent in developed nations, infects up to one-third of the human population. The success of this parasite depends on several unique structures including an inner membrane complex (IMC) that lines the interior of the plasma membrane and contains proteins important for gliding motility and replication. Of these proteins, the IMC sub-compartment proteins (ISPs) have recently been shown to play a role in asexual T. gondii daughter cell formation, yet the mechanism is unknown. Complicating mechanistic characterization of the ISPs is a lack of sequence identity with proteins of known structure or function. In support of elucidating the function of ISPs, we first determined the crystal structures of representative members TgISP1 and TgISP3 to a resolution of 2.10 and 2.32 Å, respectively. Structural analysis revealed that both ISPs adopt a pleckstrin homology fold often associated with phospholipid binding or protein-protein interactions. Substitution of basic for hydrophobic residues in the region that overlays with phospholipid binding in related pleckstrin homology domains, however, suggests that ISPs do not retain phospholipid binding activity. Consistent with this observation, biochemical assays revealed no phospholipid binding activity. Interestingly, mapping of conserved surface residues combined with crystal packing analysis indicates that TgISPs have functionally repurposed the phospholipid-binding site likely to coordinate protein partners. Recruitment of larger protein complexes may also be aided through avidity-enhanced interactions resulting from multimerization of the ISPs. Overall, we propose a model where TgISPs recruit protein partners to the IMC to ensure correct progression of daughter cell formation.


Asunto(s)
Proteínas Sanguíneas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfoproteínas/química , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Homología de Secuencia de Aminoácido , Toxoplasma/fisiología , Secuencia de Aminoácidos , Secuencia Conservada , Disulfuros/química , Modelos Moleculares , Datos de Secuencia Molecular , Fosfolípidos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Toxoplasma/citología , Toxoplasma/metabolismo
14.
PLoS Pathog ; 9(2): e1003162, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23408890

RESUMEN

Apicomplexans are obligate intracellular parasites that actively penetrate their host cells to create an intracellular niche for replication. Commitment to invasion is thought to be mediated by the rhoptries, specialized apical secretory organelles that inject a protein complex into the host cell to form a tight-junction for parasite entry. Little is known about the molecular factors that govern rhoptry biogenesis, their subcellular organization at the apical end of the parasite and subsequent release of this organelle during invasion. We have identified a Toxoplasma palmitoyl acyltransferase, TgDHHC7, which localizes to the rhoptries. Strikingly, conditional knockdown of TgDHHC7 results in dispersed rhoptries that fail to organize at the apical end of the parasite and are instead scattered throughout the cell. While the morphology and content of these rhoptries appears normal, failure to tether at the apex results in a complete block in host cell invasion. In contrast, attachment and egress are unaffected in the knockdown, demonstrating that the rhoptries are not required for these processes. We show that rhoptry targeting of TgDHHC7 requires a short, highly conserved C-terminal region while a large, divergent N-terminal domain is dispensable for both targeting and function. Additionally, a point mutant lacking a key residue predicted to be critical for enzyme activity fails to rescue apical rhoptry tethering, strongly suggesting that tethering of the organelle is dependent upon TgDHHC7 palmitoylation activity. We tie the importance of this activity to the palmitoylated Armadillo Repeats-Only (TgARO) rhoptry protein by showing that conditional knockdown of TgARO recapitulates the dispersed rhoptry phenotype of TgDHHC7 knockdown. The unexpected finding that apicomplexans have exploited protein palmitoylation for apical organelle tethering yields new insight into the biogenesis and function of rhoptries and may provide new avenues for therapeutic intervention against Toxoplasma and related apicomplexan parasites.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Orgánulos/enzimología , Infecciones por Protozoos/parasitología , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Aciltransferasas/genética , Secuencia de Aminoácidos , Animales , Proteínas del Dominio Armadillo/genética , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Parásitos , Humanos , Lipoilación , Modelos Biológicos , Datos de Secuencia Molecular , Orgánulos/fisiología , Orgánulos/ultraestructura , Fenotipo , Estructura Terciaria de Proteína , Transporte de Proteínas , Infecciones por Protozoos/metabolismo , Proteínas Protozoarias/genética , Ratas , Proteínas Recombinantes de Fusión , Alineación de Secuencia , Eliminación de Secuencia , Uniones Estrechas/parasitología , Uniones Estrechas/ultraestructura , Toxoplasma/genética , Toxoplasma/fisiología , Toxoplasma/ultraestructura
15.
Nat Chem Biol ; 9(10): 651-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23934245

RESUMEN

Although there have been numerous advances in our understanding of how apicomplexan parasites such as Toxoplasma gondii enter host cells, many of the signaling pathways and enzymes involved in the organization of invasion mediators remain poorly defined. We recently performed a forward chemical-genetic screen in T. gondii and identified compounds that markedly enhanced infectivity. Although molecular dissection of invasion has benefited from the use of small-molecule inhibitors, the mechanisms underlying induction of invasion by small-molecule enhancers have never been described. Here we identify the Toxoplasma ortholog of human APT1, palmitoyl protein thioesterase-1 (TgPPT1), as the target of one class of small-molecule enhancers. Inhibition of this uncharacterized thioesterase triggered secretion of invasion-associated organelles, increased motility and enhanced the invasive capacity of tachyzoites. We demonstrate that TgPPT1 is a bona fide depalmitoylase, thereby establishing an important role for dynamic and reversible palmitoylation in host-cell invasion by T. gondii.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Células Epiteliales/parasitología , Bibliotecas de Moléculas Pequeñas/farmacología , Tioléster Hidrolasas/antagonistas & inhibidores , Toxoplasma/efectos de los fármacos , Toxoplasma/enzimología , Animales , Línea Celular , Cumarinas/química , Cumarinas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidad
16.
Eukaryot Cell ; 12(7): 1009-19, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23687115

RESUMEN

SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.


Asunto(s)
Evolución Biológica , Flagelos/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Citoesqueleto de Actina/metabolismo , Axonema/metabolismo , Axonema/ultraestructura , Cilios/metabolismo , Flagelos/ultraestructura , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Toxoplasma/ultraestructura
17.
mSphere ; 9(2): e0039323, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38334391

RESUMEN

Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric Plasmodium export element (PEXEL)/host-targeting motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here, we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood stage. While the N termini of exported proteins containing the PEXEL and immediately downstream ~10 residues are sufficient to mediate translocation into the RBC, the equivalent UIS2 N terminus does not promote the export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position, which constitutes the extreme N-terminal residue following PEXEL cleavage (P1', RIL↓DE). Using a series of chimeric reporter fusions, we show that Asp at P1' is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N terminus mediates export, not PEXEL processing per se. Prompted by this observation, we further show that PEXEL sequences in the N termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export.IMPORTANCEHost erythrocyte remodeling by malaria parasite-exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum, most exported proteins undergo proteolytic maturation via recognition of the pentameric Plasmodium export element (PEXEL)/host-targeting motif by the aspartic protease Plasmepsin V, which exposes a mature N terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate that PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing, reinforcing that features of the mature N terminus, and not PEXEL cleavage, identify cargo for export. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.


Asunto(s)
Malaria Falciparum , Plasmodium , Humanos , Proteínas Protozoarias/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Péptido Hidrolasas/metabolismo
18.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38405843

RESUMEN

Plasmodium parasites, which are the causative agents of malaria, undergo closed mitosis without breakdown of the nuclear envelope. Unlike the closed mitosis in yeast, P. berghei parasites undergo multiple rounds of asynchronous nuclear divisions in a shared cytoplasm result in a multinucleated (8-24) organism prior to formation of daughter cells within an infected red blood cell. During this replication process, intact nuclear pore complexes (NPCs) and their component nucleoporins are likely to play critical roles in parasite growth, facilitating selective bi-directional nucleocytoplasmic transport and genome organization. Here we utilize ultrastructure expansion microscopy (U-ExM) to investigate P. berghei Nup138, Nup221, and Nup313 at the single nucleus level throughout the 24 hour blood-stage replication cycle. Our findings reveal that these Nups are evenly distributed around the nuclei and organized in a rosette structure previously undescribed around the centriolar plaque, which is responsible for intranuclear microtubule nucleation during mitosis. We also detect an increased number of NPCs compared with previously reported, highlighting the power of U-ExM. By adapting the recombination-induced tag exchange (RITE) system to P. berghei, we provide evidence of NPC maintenance, demonstrating Nup221 turnover during parasite asexual replication. Our data shed light on the distribution of NPCs and their homeostasis during the blood-stage replication of P. berghei parasites. Further studies into the nuclear surface of these parasites will allow for a better understanding of parasites nuclear mechanics and organization.

19.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503245

RESUMEN

Obligate intracellular malaria parasites dramatically remodel their erythrocyte host through effector protein export to create a niche for survival. Most exported proteins contain a pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting Motif that is cleaved in the parasite ER by the aspartic protease Plasmepsin V (PMV). This processing event exposes a mature N-terminus required for translocation into the host cell and is not known to occur in non-exported proteins. Here we report that the non-exported parasitophorous vacuole protein UIS2 contains a bona fide PEXEL motif that is processed in the P. falciparum blood-stage. While the N-termini of exported proteins containing the PEXEL and immediately downstream ∼10 residues is sufficient to mediate translocation into the RBC, the equivalent UIS2 N-terminus does not promote export of a reporter. Curiously, the UIS2 PEXEL contains an unusual aspartic acid at the fourth position which constitutes the extreme N-terminal residue following PEXEL cleavage (P1', RILτDE). Using a series of chimeric reporter fusions, we show that Asp at P1' is permissive for PMV processing but abrogates export. Moreover, mutation of this single UIS2 residue to alanine enables export, reinforcing that the mature N-terminus mediates export, not PEXEL processing per se . Prompted by this observation, we further show that PEXEL sequences in the N-termini of other non-exported rhoptry proteins are also processed, suggesting that PMV may be a more general secretory maturase than previously appreciated, similar to orthologs in related apicomplexans. Our findings provide new insight into the unique N-terminal constraints that mark proteins for export. Importance: Host erythrocyte remodeling by malaria parasite exported effector proteins is critical to parasite survival and disease pathogenesis. In the deadliest malaria parasite Plasmodium falciparum , most exported proteins undergo proteolytic maturation via recognition of the pentameric P lasmodium ex port el ement (PEXEL)/Host Targeting motif by the aspartic protease Plasmepsin V (PMV) which exposes a mature N-terminus that is conducive for export into the erythrocyte host cell. While PEXEL processing is considered a unique mark of exported proteins, we demonstrate PEXEL motifs are present and processed in non-exported proteins. Importantly, we show that specific residues at the variable fourth position of the PEXEL motif inhibit export despite being permissive for processing by PMV, reinforcing that features of the mature N-terminus, and not PEXEL cleavage, identify cargo for export cargo. This opens the door to further inquiry into the nature and evolution of the PEXEL motif.

20.
PLoS Pathog ; 6(9): e1001094, 2010 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-20844581

RESUMEN

Apicomplexans employ a peripheral membrane system called the inner membrane complex (IMC) for critical processes such as host cell invasion and daughter cell formation. We have identified a family of proteins that define novel sub-compartments of the Toxoplasma gondii IMC. These IMC Sub-compartment Proteins, ISP1, 2 and 3, are conserved throughout the Apicomplexa, but do not appear to be present outside the phylum. ISP1 localizes to the apical cap portion of the IMC, while ISP2 localizes to a central IMC region and ISP3 localizes to a central plus basal region of the complex. Targeting of all three ISPs is dependent upon N-terminal residues predicted for coordinated myristoylation and palmitoylation. Surprisingly, we show that disruption of ISP1 results in a dramatic relocalization of ISP2 and ISP3 to the apical cap. Although the N-terminal region of ISP1 is necessary and sufficient for apical cap targeting, exclusion of other family members requires the remaining C-terminal region of the protein. This gate-keeping function of ISP1 reveals an unprecedented mechanism of interactive and hierarchical targeting of proteins to establish these unique sub-compartments in the Toxoplasma IMC. Finally, we show that loss of ISP2 results in severe defects in daughter cell formation during endodyogeny, indicating a role for the ISP proteins in coordinating this unique process of Toxoplasma replication.


Asunto(s)
División Celular , Membrana Celular/metabolismo , Fibroblastos/parasitología , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Células Cultivadas , Fibroblastos/citología , Prepucio/citología , Prepucio/parasitología , Humanos , Inmunización , Inmunoglobulina G/inmunología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Toxoplasmosis/genética , Toxoplasmosis/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA