Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 909
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 22(1): 54-70, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33093673

RESUMEN

Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.


Asunto(s)
Lipogénesis , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Animales , Humanos , Transporte de Proteínas , Proteoma/análisis
2.
Cell ; 167(3): 722-738.e23, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768893

RESUMEN

A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.


Asunto(s)
Metabolismo Energético/genética , Epigénesis Genética , Histona Acetiltransferasas/metabolismo , Mitocondrias Musculares/enzimología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Cardiomiopatía Hipertrófica/genética , Respiración de la Célula/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células HeLa , Insuficiencia Cardíaca/genética , Histona Acetiltransferasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Mitocondrias Musculares/genética , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación Oxidativa , Factores de Transcripción/genética
3.
Nature ; 627(8003): 445-452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383785

RESUMEN

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Asunto(s)
Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes de Eucariotas , Ubiquitina-Proteína Ligasas , Sitios de Unión , Biocatálisis , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Peptidil Transferasas/ultraestructura , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura
4.
Mol Cell ; 82(18): 3424-3437.e8, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36113412

RESUMEN

Cells can respond to stalled ribosomes by sensing ribosome collisions and employing quality control pathways. How ribosome stalling is resolved without collisions, however, has remained elusive. Here, focusing on noncolliding stalling exhibited by decoding-defective ribosomes, we identified Fap1 as a stalling sensor triggering 18S nonfunctional rRNA decay via polyubiquitination of uS3. Ribosome profiling revealed an enrichment of Fap1 at the translation initiation site but also an association with elongating individual ribosomes. Cryo-EM structures of Fap1-bound ribosomes elucidated Fap1 probing the mRNA simultaneously at both the entry and exit channels suggesting an mRNA stasis sensing activity, and Fap1 sterically hinders the formation of canonical collided di-ribosomes. Our findings indicate that individual stalled ribosomes are the potential signal for ribosome dysfunction, leading to accelerated turnover of the ribosome itself.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Ribosomas/metabolismo
5.
Nature ; 614(7946): 153-159, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697829

RESUMEN

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.


Asunto(s)
Proteínas Fúngicas , Mitocondrias , Proteínas Mitocondriales , Transporte de Proteínas , Proteoma , Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo , Respiración de la Célula , Ribosomas , Conjuntos de Datos como Asunto
6.
Cell ; 154(3): 596-608, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911324

RESUMEN

The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of ß-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the ß-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring ß-barrel formation in vivo and in organello and demonstrated that the ß-barrel was formed and membrane inserted while the precursor was bound to SAM. ß-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Mutación , Porinas/química , Porinas/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Nature ; 591(7850): 471-476, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627869

RESUMEN

The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.


Asunto(s)
Dictyostelium/citología , Dictyostelium/metabolismo , Privación de Alimentos/fisiología , Nutrientes/metabolismo , Azufre/metabolismo , Aminoácidos Esenciales/metabolismo , Aminoácidos Esenciales/farmacología , Antioxidantes/metabolismo , Agregación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Cisteína/química , Cisteína/metabolismo , Cisteína/farmacología , Dictyostelium/efectos de los fármacos , Glutatión/química , Glutatión/metabolismo , Glutatión/farmacología , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Nature ; 590(7844): 163-169, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33408415

RESUMEN

The mitochondrial outer membrane contains so-called ß-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of ß-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the ß-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the ß-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed ß-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a ß-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of ß-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for ß-barrel assembly.


Asunto(s)
Microscopía por Crioelectrón , Mitocondrias/química , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
9.
Mol Cell ; 73(5): 1056-1065.e7, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30738704

RESUMEN

The mitochondrial inner membrane harbors a large number of metabolite carriers. The precursors of carrier proteins are synthesized in the cytosol and imported into mitochondria by the translocase of the outer membrane (TOM) and the carrier translocase of the inner membrane (TIM22). Molecular chaperones in the cytosol and intermembrane space bind to the hydrophobic precursors to prevent their aggregation. We report that the major metabolite channel of the outer membrane, termed porin or voltage-dependent anion channel (VDAC), promotes efficient import of carrier precursors. Porin interacts with carrier precursors arriving in the intermembrane space and recruits TIM22 complexes, thus ensuring an efficient transfer of the precursors to the inner membrane translocase. Porin channel mutants impaired in metabolite transport are not disturbed in carrier import into mitochondria. We conclude that porin serves distinct functions as outer membrane channel for metabolites and as coupling factor for protein translocation into the inner membrane.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiportadores/genética , Antiportadores/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Porinas/genética , Unión Proteica , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
PLoS Biol ; 21(4): e3001995, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37079644

RESUMEN

Cotranslational modification of the nascent polypeptide chain is one of the first events during the birth of a new protein. In eukaryotes, methionine aminopeptidases (MetAPs) cleave off the starter methionine, whereas N-acetyl-transferases (NATs) catalyze N-terminal acetylation. MetAPs and NATs compete with other cotranslationally acting chaperones, such as ribosome-associated complex (RAC), protein targeting and translocation factors (SRP and Sec61) for binding sites at the ribosomal tunnel exit. Yet, whereas well-resolved structures for ribosome-bound RAC, SRP and Sec61, are available, structural information on the mode of ribosome interaction of eukaryotic MetAPs or of the five cotranslationally active NATs is only available for NatA. Here, we present cryo-EM structures of yeast Map1 and NatB bound to ribosome-nascent chain complexes. Map1 is mainly associated with the dynamic rRNA expansion segment ES27a, thereby kept at an ideal position below the tunnel exit to act on the emerging substrate nascent chain. For NatB, we observe two copies of the NatB complex. NatB-1 binds directly below the tunnel exit, again involving ES27a, and NatB-2 is located below the second universal adapter site (eL31 and uL22). The binding mode of the two NatB complexes on the ribosome differs but overlaps with that of NatA and Map1, implying that NatB binds exclusively to the tunnel exit. We further observe that ES27a adopts distinct conformations when bound to NatA, NatB, or Map1, together suggesting a contribution to the coordination of a sequential activity of these factors on the emerging nascent chain at the ribosomal exit tunnel.


Asunto(s)
Péptidos , Ribosomas , Ribosomas/metabolismo , Péptidos/química , ARN Ribosómico/metabolismo , Sitios de Unión , Saccharomyces cerevisiae/genética , Metionina/metabolismo , Biosíntesis de Proteínas , Acetiltransferasas/análisis , Acetiltransferasas/genética , Acetiltransferasas/metabolismo
11.
Genes Dev ; 32(19-20): 1285-1296, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275044

RESUMEN

Mitochondria contain their own genome that encodes for a small number of proteins, while the vast majority of mitochondrial proteins is produced on cytosolic ribosomes. The formation of respiratory chain complexes depends on the coordinated biogenesis of mitochondrially encoded and nuclear-encoded subunits. In this review, we describe pathways that adjust mitochondrial protein synthesis and import of nuclear-encoded subunits to the assembly of respiratory chain complexes. Furthermore, we outline how defects in protein import into mitochondria affect nuclear gene expression to maintain protein homeostasis under physiological and stress conditions.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Transporte de Electrón , Regulación de la Expresión Génica , Genoma Mitocondrial , Humanos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Transporte de Proteínas , Estrés Fisiológico , Levaduras/genética
12.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38658168

RESUMEN

Hexanucleotide repeat expansions within the gene C9ORF72 are the most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This disease-causing expansion leads to a reduction in C9ORF72 expression levels in patients, suggesting loss of C9ORF72 function could contribute to disease. To further understand the consequences of C9ORF72 deficiency in vivo, we generated a c9orf72 mutant zebrafish line. Analysis of the adult female spinal cords revealed no appreciable neurodegenerative pathology such as loss of motor neurons or increased levels of neuroinflammation. However, detailed examination of adult female c9orf72-/- retinas showed prominent neurodegenerative features, including a decrease in retinal thickness, gliosis, and an overall reduction in neurons of all subtypes. Analysis of rod and cone cells within the photoreceptor layer showed a disturbance in their outer segment structure and rhodopsin mislocalization from rod outer segments to their cell bodies and synaptic terminals. Thus, C9ORF72 may play a previously unappreciated role in retinal homeostasis and suggests C9ORF72 deficiency can induce tissue specific neuronal loss.


Asunto(s)
Proteína C9orf72 , Retina , Pez Cebra , Animales , Femenino , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Retina/metabolismo , Retina/patología , Animales Modificados Genéticamente , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas/genética , Proteínas/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Médula Espinal/metabolismo , Médula Espinal/patología
13.
EMBO J ; 40(3): e105643, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33305433

RESUMEN

In eukaryotes, most secretory and membrane proteins are targeted by an N-terminal signal sequence to the endoplasmic reticulum, where the trimeric Sec61 complex serves as protein-conducting channel (PCC). In the post-translational mode, fully synthesized proteins are recognized by a specialized channel additionally containing the Sec62, Sec63, Sec71, and Sec72 subunits. Recent structures of this Sec complex in the idle state revealed the overall architecture in a pre-opened state. Here, we present a cryo-EM structure of the yeast Sec complex bound to a substrate, and a crystal structure of the Sec62 cytosolic domain. The signal sequence is inserted into the lateral gate of Sec61α similar to previous structures, yet, with the gate adopting an even more open conformation. The signal sequence is flanked by two Sec62 transmembrane helices, the cytoplasmic N-terminal domain of Sec62 is more rigidly positioned, and the plug domain is relocated. We crystallized the Sec62 domain and mapped its interaction with the C-terminus of Sec63. Together, we obtained a near-complete and integrated model of the active Sec complex.


Asunto(s)
Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/química
14.
EMBO J ; 40(1): e105179, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33289941

RESUMEN

In eukaryotic translation, termination and ribosome recycling phases are linked to subsequent initiation of a new round of translation by persistence of several factors at ribosomal sub-complexes. These comprise/include the large eIF3 complex, eIF3j (Hcr1 in yeast) and the ATP-binding cassette protein ABCE1 (Rli1 in yeast). The ATPase is mainly active as a recycling factor, but it can remain bound to the dissociated 40S subunit until formation of the next 43S pre-initiation complexes. However, its functional role and native architectural context remains largely enigmatic. Here, we present an architectural inventory of native yeast and human ABCE1-containing pre-initiation complexes by cryo-EM. We found that ABCE1 was mostly associated with early 43S, but also with later 48S phases of initiation. It adopted a novel hybrid conformation of its nucleotide-binding domains, while interacting with the N-terminus of eIF3j. Further, eIF3j occupied the mRNA entry channel via its ultimate C-terminus providing a structural explanation for its antagonistic role with respect to mRNA binding. Overall, the native human samples provide a near-complete molecular picture of the architecture and sophisticated interaction network of the 43S-bound eIF3 complex and the eIF2 ternary complex containing the initiator tRNA.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Unión Proteica/fisiología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35502778

RESUMEN

In fishes and salamanders, but not mammals, neural stem cells switch back to neurogenesis after injury. The signalling environment of neural stem cells is strongly altered by the presence of damaged cells and an influx of immune, as well as other, cells. Here, we summarise our recently expanded knowledge of developmental, physiological and immune signals that act on neural stem cells in the zebrafish central nervous system to directly, or indirectly, influence their neurogenic state. These signals act on several intracellular pathways, which leads to changes in chromatin accessibility and gene expression, ultimately resulting in regenerative neurogenesis. Translational approaches in non-regenerating mammals indicate that central nervous system stem cells can be reprogrammed for neurogenesis. Understanding signalling mechanisms in naturally regenerating species show the path to experimentally promoting neurogenesis in mammals.


Asunto(s)
Células-Madre Neurales , Pez Cebra , Animales , Sistema Nervioso Central/fisiología , Mamíferos , Regeneración Nerviosa/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Pez Cebra/fisiología
16.
Nature ; 569(7758): 679-683, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118508

RESUMEN

Mitochondrial biogenesis and functions depend on the import of precursor proteins via the 'translocase of the outer membrane' (TOM complex). Defects in protein import lead to an accumulation of mitochondrial precursor proteins that induces a range of cellular stress responses. However, constitutive quality-control mechanisms that clear trapped precursor proteins from the TOM channel under non-stress conditions have remained unknown. Here we report that in Saccharomyces cerevisiae Ubx2, which functions in endoplasmic reticulum-associated degradation, is crucial for this quality-control process. A pool of Ubx2 binds to the TOM complex to recruit the AAA ATPase Cdc48 for removal of arrested precursor proteins from the TOM channel. This mitochondrial protein translocation-associated degradation (mitoTAD) pathway continuously monitors the TOM complex under non-stress conditions to prevent clogging of the TOM channel with precursor proteins. The mitoTAD pathway ensures that mitochondria maintain their full protein-import capacity, and protects cells against proteotoxic stress induced by impaired transport of proteins into mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteolisis , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína que Contiene Valosina/metabolismo
17.
Nature ; 575(7782): 395-401, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31600774

RESUMEN

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Asunto(s)
Microscopía por Crioelectrón , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Fosfolípidos/metabolismo , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
18.
EMBO J ; 39(3): e103365, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31858614

RESUMEN

Inhibitory codon pairs and poly(A) tracts within the translated mRNA cause ribosome stalling and reduce protein output. The molecular mechanisms that drive these stalling events, however, are still unknown. Here, we use a combination of in vitro biochemistry, ribosome profiling, and cryo-EM to define molecular mechanisms that lead to these ribosome stalls. First, we use an in vitro reconstituted yeast translation system to demonstrate that inhibitory codon pairs slow elongation rates which are partially rescued by increased tRNA concentration or by an artificial tRNA not dependent on wobble base-pairing. Ribosome profiling data extend these observations by revealing that paused ribosomes with empty A sites are enriched on these sequences. Cryo-EM structures of stalled ribosomes provide a structural explanation for the observed effects by showing decoding-incompatible conformations of mRNA in the A sites of all studied stall- and collision-inducing sequences. Interestingly, in the case of poly(A) tracts, the inhibitory conformation of the mRNA in the A site involves a nucleotide stacking array. Together, these data demonstrate a novel mRNA-induced mechanisms of translational stalling in eukaryotic ribosomes.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Codón , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Poli A/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética
19.
EMBO J ; 39(9): e103788, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32064661

RESUMEN

Ribosome recycling by the twin-ATPase ABCE1 is a key regulatory process in mRNA translation and surveillance and in ribosome-associated protein quality control in Eukarya and Archaea. Here, we captured the archaeal 30S ribosome post-splitting complex at 2.8 Å resolution by cryo-electron microscopy. The structure reveals the dynamic behavior of structural motifs unique to ABCE1, which ultimately leads to ribosome splitting. More specifically, we provide molecular details on how conformational rearrangements of the iron-sulfur cluster domain and hinge regions of ABCE1 are linked to closure of its nucleotide-binding sites. The combination of mutational and functional analyses uncovers an intricate allosteric network between the ribosome, regulatory domains of ABCE1, and its two structurally and functionally asymmetric ATP-binding sites. Based on these data, we propose a refined model of how signals from the ribosome are integrated into the ATPase cycle of ABCE1 to orchestrate ribosome recycling.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Subunidades Ribosómicas Pequeñas de Archaea/metabolismo , Thermococcus/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Microscopía por Crioelectrón , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Subunidades Ribosómicas Pequeñas de Archaea/química , Ribosomas/metabolismo , Thermococcus/genética
20.
J Inherit Metab Dis ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790152

RESUMEN

Mitochondria carry out essential functions for the cell, including energy production, various biosynthesis pathways, formation of co-factors and cellular signalling in apoptosis and inflammation. The functionality of mitochondria requires the import of about 900-1300 proteins from the cytosol in baker's yeast Saccharomyces cerevisiae and human cells, respectively. The vast majority of these proteins pass the outer membrane in a largely unfolded state through the translocase of the outer mitochondrial membrane (TOM) complex. Subsequently, specific protein translocases sort the precursor proteins into the outer and inner membranes, the intermembrane space and matrix. Premature folding of mitochondrial precursor proteins, defects in the mitochondrial protein translocases or a reduction of the membrane potential across the inner mitochondrial membrane can cause stalling of precursors at the protein import apparatus. Consequently, the translocon is clogged and non-imported precursor proteins accumulate in the cell, which in turn leads to proteotoxic stress and eventually cell death. To prevent such stress situations, quality control mechanisms remove non-imported precursor proteins from the TOM channel. The highly conserved ubiquitin-proteasome system of the cytosol plays a critical role in this process. Thus, the surveillance of protein import via the TOM complex involves the coordinated activity of mitochondria-localized and cytosolic proteins to prevent proteotoxic stress in the cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA