Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nitric Oxide ; 138-139: 64-69, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392928

RESUMEN

INTRODUCTION: Attention deficit hyperactivity disorder (ADHD) is a mental disorder that was once thought to occur only in children. Meanwhile, it is known that adults can also be affected. The first-line drug in children and adults to treat symptoms of inattention, impulsivity, lack of self-regulation, and hyperactivity is methylphenidate (MPH). Known adverse effects of MPH include cardiovascular problems, such as elevated blood pressure and heart rate. Therefore, biomarkers to monitor potential cardiovascular side effects of MPH are needed. The l-Arginine/Nitric oxide (Arg/NO) pathway is involved in noradrenaline and dopamine release as well as in normal cardiovascular functioning and is therefore a prime candidate for the search of biomarkers. The aim of the present study was to investigate the Arg/NO pathway as well as oxidative stress in adult ADHD patients in plasma and urine and the potential influence of MPH medication. METHODS: In plasma and urine samples of 29 adults with ADHD (39.2 ± 10.9 years) and 32 healthy adults serving as controls (CO) (38.0 ± 11.6 years) the major NO metabolites nitrite and nitrate, Arg, the NO synthesis inhibitor asymmetric dimethylarginine (ADMA) and its major urinary metabolite dimethylamine (DMA) as well as malondialdehyde (MDA) were measured by gas chromatography-mass spectrometry. RESULTS: Of the 29 patients with ADHD 14 were currently without MPH treatment (-MPH) and 15 were treated with MPH (+MPH). Plasma nitrate concentrations were significantly higher in patients not treated with MPH vs. CO (-MPH 60.3 µM [46.2-76.0] vs. CO 44.4 µM [35.0-52.7]; p = 0.002), while plasma nitrite tended to be higher in -MPH patients (2.77 µM [2.26-3.27]) vs. CO (2.13 µM [1.50-2.93]; p = 0.053). Additionally, plasma creatinine concentrations were significantly different, with -MPH showing significantly higher concentrations than the other two groups (-MPH 141 µM [128-159]; +MPH 96.2 µM [70.2-140]; Co 75.9 µM [62.0-94.7]; p < 0.001). Urinary creatinine excretion tended to be lowest in -MPH group vs. +MPH and CO (-MPH 11.4 ± 8.88 mM; +MPH 20.7 ± 9.82 mM; 16.6 ± 7.82 mM; p = 0.076). None of the other metabolites, including MDA, a marker of oxidative stress, showed a difference between the groups. CONCLUSION: Adult patients with ADHD, who are not treated with MPH (-MPH), showed varied Arg/NO pathway, but Arg bioavailability seemed to be consistent over the groups. Our findings imply that urinary reabsorption may be increase and/or excretion of nitrite and nitrate may be decreased in ADHD, resulting in an increase in the plasma concentration of nitrite. MPH seems to partially reverse these effects by not yet known mechanisms, and does not affect oxidative stress.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Niño , Humanos , Adulto , Metilfenidato/efectos adversos , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Óxido Nítrico , Nitritos/uso terapéutico , Nitratos/uso terapéutico , Creatinina , Arginina , Estrés Oxidativo
2.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770607

RESUMEN

Gas chromatography-mass spectrometry (GC-MS) is useful for the quantitative determination of the polyamines spermidine (SPD) and putrescine (PUT) and of the biogenic amine agmatine (AGM) in biological samples after derivatization. This GC-MS method involves a two-step extraction with n-butanol and hydrochloric acid, derivatization with pentafluoropropionic anhydride (PFPA) in ethyl acetate, and extraction of the pentafluoropropionic (PFP) derivatives by toluene of SPD, PUT, and AGM. We wanted to extend this GC-MS method for the biogenic amine histamine (HA), but we faced serious problems that did not allow reliable quantitative analysis of HA. In the present work, we addressed this issue and investigated the derivatization of HA and the effects of toluene and ethyl acetate, two commonly used water-insoluble organic solvents in GC-MS, and oven temperature program. Derivatization of unlabelled HA (d0-HA) and deuterium-labelled HA (d4-HA) with PFPA in ethyl acetate (PFPA-EA, 1:4, v/v; 30 min, 65 °C) resulted in the formation of d0-HA-(PFP)2 and d4-HA-(PFP)2 derivatives. d4-HA and 13C4-SPD were used as internal standards for the amines after standardization. Considerable quantitative effects of toluene and ethyl acetate were observed. The starting GC column temperature was also found to influence considerably the GC-MS analysis of HA. Our study shows the simultaneous quantitative analysis of HA as HA-(PFP)2, AGM as AGM-(PFP)3, PUT as PUT-(PFP)2, and SPD as SPD-(PFP)3 derivatives requires the use of ethyl acetate for their extraction and injection into the GC-MS apparatus and a starting GC column temperature of 40 °C instead of 70 °C. The PFP derivatives of HA, AGM, PUT, and SPD were found to be stable in ethyl acetate for several hours at room temperature. Analytically satisfactory linearity, precision, and accuracy were observed for HA, AGM, PUT, and SPD in biologically relevant ranges (0 to 700 pmol). The limits of detection of AGM, PUT, and SPD were about two times lower in ethyl acetate compared to toluene (range, 1-22 fmol). The limits of detection were 1670 fmol for d0-HA and 557 fmol for d4-HA. Despite the improvements achieved in the study for HA, its analysis by GC-MS as a PFP derivative is challenging and less efficient than that of PUT, AGM, and SPD.


Asunto(s)
Agmatina , Espermidina , Espermidina/análisis , Putrescina , Cromatografía de Gases y Espectrometría de Masas/métodos , Histamina/análisis , Agmatina/análisis , Solventes/análisis , Temperatura , Poliaminas , Aminas Biogénicas/análisis , Tolueno
3.
Amino Acids ; 54(12): 1611-1619, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35976439

RESUMEN

We measured free and proteinic concentrations of native and modified amino acids from post-translational modifications (PTMs) and correlated them with the activity of SIRT1 and SIRT3 in the pellet and aqueous phases of human breast milk samples of ten lactating women during the neonatal period. SIRT1 and SIRT3 correlated directly with citrullination, asymmetric dimethylation and glycation of L-arginine, hydroxylation and glycation of L-lysine. SIRT1 and SIRT3 correlated inversely with the hydroxylation of L-proline. SIRT1 and SITR3 tended to correlate inversely with oxidative stress measured as malondialdehyde. Our study suggests that SIRT1 and SIRT3 may modulate PTMs in human breast milk cells.


Asunto(s)
Sirtuina 3 , Recién Nacido , Humanos , Femenino , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Lactancia , Leche Humana/metabolismo , Procesamiento Proteico-Postraduccional
4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142560

RESUMEN

The aim of the study was to investigate the effects of short-term oral administration of inorganic nitrate (NaNO3; n = 8) or placebo (NaCl; n = 9) (each 0.1 mmol/kg body weight/d for 9 days) on plasma amino acids, creatinine, and oxidative stress in healthy young men. At baseline, the plasma concentrations of amino acids did not differ between the groups. At the end of the study, the plasma concentrations of homoarginine (hArg; by 24%, p = 0.0001), citrulline and ornithine (Cit/Orn; by 16%, p = 0.015), and glutamine/glutamate (Gln/Glu; by 6%, p = 0.0003) were higher in the NaNO3 group compared to the NaCl group. The plasma concentrations of sarcosine (Sarc; by 28%, p < 0.0001), tyrosine (by 14%, p = 0.0051), phenylalanine (by 8%, p = 0.0026), and tryptophan (by 8%, p = 0.0047) were lower in the NaNO3 group compared to the NaCl group. These results suggest that nitrate administration affects amino-acid metabolism. The arginine/glycine amidinotransferase (AGAT) catalyzes two reactions: (1) the formation of l-homoarginine (hArg) and l-ornithine (Orn) from l-arginine (Arg) and l-lysine (Lys): Arg + Lys <−> hArg + Orn, with equilibrium constant Kharg; (2) the formation of guanidinoacetate (GAA) and Orn from Arg and glycine (Gly): Arg + Gly <−> GAA + Orn, with equilibrium constant Kgaa. The plasma Kgaa/KhArg ratio was lower in the NaNO3 group compared to the NaCl group (1.57 vs. 2.02, p = 0.0034). Our study suggests that supplementation of inorganic nitrate increases the AGAT-catalyzed synthesis of hArg and decreases the N-methyltransferase-catalyzed synthesis of GAA, the precursor of creatine. To our knowledge, this is the first study to demonstrate elevation of hArg synthesis by inorganic nitrate supplementation. Remarkably, an increase of 24% corresponds to the synthesis capacity of one kidney in healthy humans. Differences in the association between plasma concentrations of amino acids in the NaNO3 and NaCl groups suggest changes in amino-acid homeostasis. Plasma concentrations of the oxidative stress marker malondialdehyde (MDA) did not change after supplementation of NaNO3 or NaCl over the whole exercise time range. Plasma nitrite concentration turned out to be a more discriminant marker of NaNO3 ingestion than plasma nitrate (area under the receiver operating characteristic curve: 0.951 vs. 0.866, p < 0.0001 each).


Asunto(s)
Homoarginina , Nitratos , Arginina/metabolismo , Citrulina , Creatina , Creatinina , Suplementos Dietéticos , Glutamatos , Glutamina , Glicina , Homoarginina/metabolismo , Humanos , Lisina , Masculino , Malondialdehído , Metiltransferasas , Nitritos , Ornitina , Fenilalanina , Sarcosina , Cloruro de Sodio , Triptófano , Tirosina
5.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35216250

RESUMEN

INTRODUCTION: L-Arginine (Arg) is a semi-essential amino acid. Constitutive and inducible nitric oxide synthase (NOS) isoforms convert Arg to nitric oxide (NO), a potent vaso- and bronchodilator with multiple biological functions. Atopic dermatitis (AD) and bronchial asthma (BA) are atopic diseases affecting many children globally. Several studies analyzed NO in airways, yet the systemic synthesis of NO in AD and BA in children with BA, AD or both is elusive. METHODS: In a multicenter study, blood and urine were obtained from 130 of 302 participating children for the measurement of metabolites of the Arg/NO pathway (BA 31.5%; AD 5.4%; AD + BA 36.1%; attention deficit hyperactivity disorder (ADHD) 12.3%). In plasma and urine amino acids Arg and homoarginine (hArg), both substrates of NOS, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), both inhibitors of NOS, dimethylamine (DMA), and nitrite and nitrate, were measured by gas chromatography-mass spectrometry. Malondialdehyde (MDA) was measured in plasma and urine samples to evaluate possible effects of oxidative stress. RESULTS: There were no differences in the Arg/NO pathway between the groups of children with different atopic diseases. In comparison to children with ADHD, children with AD, BA or AD and BA had higher plasma nitrite (p < 0.001) and nitrate (p < 0.001) concentrations, suggesting higher systemic NO synthesis in AD and BA. Urinary excretion of DMA was also higher (p = 0.028) in AD and BA compared to patients with ADHD, suggesting elevated ADMA metabolization. DISCUSSION/CONCLUSION: The Arg/NO pathway is activated in atopic diseases independent of severity. Systemic NO synthesis is increased in children with an atopic disease. Plasma and urinary MDA levels did not differ between the groups, suggesting no effect of oxidative stress on the Arg/NO pathway in atopic diseases.


Asunto(s)
Arginina/metabolismo , Dermatitis Atópica/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Arginina/análogos & derivados , Arginina/sangre , Asma/sangre , Asma/metabolismo , Niño , Dermatitis Atópica/sangre , Femenino , Homoarginina/sangre , Homoarginina/metabolismo , Humanos , Masculino , Malondialdehído/sangre , Malondialdehído/metabolismo , Nitratos/sangre , Nitratos/metabolismo , Óxido Nítrico/sangre , Nitritos/sangre , Nitritos/metabolismo
6.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071971

RESUMEN

In consideration of its relatively constant urinary excretion rate, creatinine (2-amino-1-methyl-5H-imidazol-4-one, MW 113.1) in urine is a useful endogenous biochemical parameter to correct the urinary excretion rate of numerous endogenous and exogenous substances. Reliable measurement of creatinine by gas chromatography (GC)-based methods requires derivatization of its amine and keto groups. Creatinine exists in equilibrium with its open form creatine (methylguanidoacetic acid, MW 131.1), which has a guanidine and a carboxylic group. Trimethylsilylation and trifluoroacetylation of creatinine and creatine are the oldest reported derivatization methods for their GC-mass spectrometry (MS) analysis in human serum using flame- or electron-ionization. We performed GC-MS studies on the derivatization of creatinine (d0-creatinine), [methylo-2H3]creatinine (d3-creatinine, internal standard) and creatine (d0-creatine) with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) using standard derivatization conditions (60 min, 60 °C), yet in the absence of any base. Reaction products were characterized both in the negative-ion chemical ionization (NICI) and in the positive-ion chemical ionization (PICI) mode. Creatinine and creatine reacted with BSTFA to form several derivatives. Their early eluting N,N,O-tris(trimethylsilyl) derivatives (8.9 min) were found to be useful for the precise and accurate measurement of the sum of creatinine and creatine in human urine (10 µL, up to 20 mM) by selected-ion monitoring (SIM) of m/z 271 (d0-creatinine/d0-creatine) and m/z 274 (d3-creatinine) in the NICI mode. In the PICI mode, SIM of m/z 256, m/z 259, m/z 272 and m/z 275 was performed. BSTFA derivatization of d0-creatine from a freshly prepared solution in distilled water resulted in formation of two lMate-eluting derivatives (14.08 min, 14.72 min), presumably creatinyl-creatinine, with the creatininyl residue existing in its enol form (14.08 min) and keto form (14.72 min). Our results suggest that BSTFA derivatization does not allow specific analysis of creatine and creatinine by GC-MS. Preliminary analyses suggest that pentafluoropropionic anhydride (PFPA) is also not useful for the measurement of creatinine in the presence of creatine. Both BSTFA and PFPA facilitate the conversion of creatine to creatinine. Specific measurement of creatinine in urine is possible by using pentafluorobenzyl bromide in aqueous acetone.


Asunto(s)
Química Farmacéutica/métodos , Creatina/orina , Creatinina/orina , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos de Trimetilsililo/química , Urinálisis/métodos , Acetona , Cromatografía Líquida de Alta Presión , Humanos , Iones , Modelos Lineales , Reproducibilidad de los Resultados , Temperatura
7.
Amino Acids ; 52(2): 225-234, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31541302

RESUMEN

Gas chromatography-mass spectrometry (GC-MS) methods were developed, validated and used to measure serum spermidine (SPD) and putrescine (PUT) in 9 seropositive Helicobacter pylori (Hp +) and 18 seronegative Helicobacter pylori (Hp -) subjects (31-105 years). Homoarginine (hArg) was also measured by GC-MS. There were no statistical differences (unpaired t test) between the Hp + and Hp - subjects with respect to the serum concentrations of SPD (67.6 ± 40.3 vs. 93.7 ± 37.7 nM, P = 0.109), PUT (220 ± 139 vs. 236 ± 85 nM, P = 0.708) and hArg (1.60 ± 0.64 µM vs. 1.83 ± 0.74 µM, P = 0.554). Serum SPD and hArg concentrations correlated with each other (r = 0.426, P = 0.026, n = 27). The PUT/SPD molar ratio correlated inversely with the hArg concentration (r = - 0.406, P = 0.034, n = 27) and proteinic citrulline (r = - 0.487, P = 0.01, n = 27). These results suggest that SPD and PUT synthesis is associated with hArg formation and protein citrullination in healthy elderly subjects. The mechanisms underlying these associations and their significance remain to be elucidated.


Asunto(s)
Homoarginina/sangre , Putrescina/sangre , Espermidina/sangre , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Cromatografía de Gases y Espectrometría de Masas , Infecciones por Helicobacter/sangre , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Humanos , Masculino , Persona de Mediana Edad
8.
Amino Acids ; 52(2): 235-245, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31776762

RESUMEN

Low L-homoarginine (hArg) concentrations in human blood and urine are associated with renal and cardiovascular morbidity and mortality, yet the underlying mechanisms and the biological activities of hArg are elusive. In humans and rats, hArg is metabolized to L-lysine. The aim of the present work was to study hArg metabolism to agmatine (Agm) and homoagmatine (hAgm) in the anesthetized rat. Using a newly developed and validated GC-MS method and a newly synthesized and structurally characterized hAgm we investigated the metabolism of i.p. administered hArg (0, 20, 220, 440 mg/kg) to hAgm and Agm in lung, kidney, liver and heart in anesthetized rats. Our study provides unequivocal evidence that hArg is metabolized to hAgm but not to Agm. Whether hAgm derived from hArg's metabolism may contribute to the pathophysiological significance of endogenous hArg and for the favoured effects of pharmacological hArg remains to be demonstrated. The biology of hArg warrants further investigations.


Asunto(s)
Agmatina/análisis , Aminobutiratos/análisis , Homoarginina/metabolismo , Agmatina/metabolismo , Aminobutiratos/metabolismo , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Homoarginina/análisis , Riñón/química , Riñón/metabolismo , Hígado/química , Hígado/metabolismo , Pulmón/química , Pulmón/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Anal Biochem ; 556: 40-44, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944873

RESUMEN

Circulating and excretory NG,N´G-dimethyl-l-arginine (symmetric dimethylarginine, SDMA) and NG,NG-dimethyl-l-arginine (asymmetric dimethylarginine, ADMA) are cardiovascular risk factors. Despite close chemical structures, the gas chromatography-mass spectrometry (GC-MS) measurement of SDMA is remarkably more difficult than that of ADMA for as yet unknown reasons. Here, we describe an improved GC-MS method for the quantitative determination of SDMA in human urine using commercially available NG,N´G-di-[2H3]methyl-l-arginine (d6-SDMA) as internal standard. The method is based on a single derivatization step with pentafluoropropionic anhydride (PFPA) in ethyl acetate (30 min, 65 °C) to N,N,N,O-tetrakis-pentafluoropropionyl derivatives, electron-capture negative-ion chemical ionization and selected-ion monitoring of the mass-to-charge (m/z) ions of m/z 456 for SDMA and m/z 462 for d6-SDMA.


Asunto(s)
Arginina/análogos & derivados , Cromatografía de Gases y Espectrometría de Masas/métodos , Arginina/orina , Humanos , Metilación
10.
Anal Biochem ; 524: 31-44, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27530652

RESUMEN

Here, we report the simultaneous derivatization and quantification of malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) in human plasma by GC-MS/MS using [1,3-2H2]-MDA (d2-MDA) and [9,9,9-2H3]-HNE (d3-HNE) as the internal standards, respectively. MDA, d2-MDA, HNE and d3-HNE were converted to their pentafluorobenzyl oximes (PFBOX) by pentafluorobenzyl hydroxylamine. Subsequently, the hydroxyl groups of the PFBOX of HNE and d3-HNE were trimethylsilylated with N,O-bis(trimethylsilyl)trifluoroacetamide/1% trimethylchlorosilane. GC-MS/MS analyses were performed in the electron-capture negative-ion chemical ionization mode. Quantification was performed by selected-reaction monitoring the mass transitions m/z 442 to m/z 243 for MDA, m/z 444 to m/z 244 for d2-MDA, m/z 403 → m/z 283 for HNE and m/z 406 → m/z 286 for d3-HNE. The method was applied to measure MDA and HNE in plasma of patients suffering from coronary artery disease (CAD) or peripheral artery occlusive disease (PAOD) before and after oral supplementation of L-arginine (3 g/day) or placebo for 3 (CAD and PAOD) and 6 months (PAOD). All plasma samples were analyzed after completion of the studies. Our results revealed that storage of plasma samples (at -80 °C) leads to lower MDA and HNE plasma concentrations in the plasma samples that were collected at the end of the studies as compared to those collected at the begin of the studies. Based on MDA and HNE measurements in plasma, L-arginine did not influence lipid peroxidation in CAD and PAOD patients. Long-term studies on lipid peroxidation are best performed by measuring oxidative stress biomarkers such as MDA and/or HNE in plasma samples immediately after their collection. Long-term storage of plasma samples even at -80 °C is not recommended.


Asunto(s)
Aldehídos/sangre , Cromatografía de Gases y Espectrometría de Masas/métodos , Malondialdehído/sangre , Estrés Oxidativo , Biomarcadores/sangre , Humanos
11.
Amino Acids ; 49(4): 783-794, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28161799

RESUMEN

L-Arginine (Arg) and L-homoarginine (hArg) are precursors of nitric oxide (NO), a signalling molecule with multiple important roles in human organism. In the circulation of adults, high concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) and low concentrations of hArg emerged as cardiovascular risk factors. Yet, the importance of the Arg/hArg/NO pathway, especially of hArg and ADMA, in preterm neonates is little understood. We comprehensively investigated the Arg/hArg/NO pathway in 106 healthy preterm infants (51 boys, 55 girls) aged between 23 + 6 and 36 + 1 gestational weeks. Babies were divided into two groups: group I consisted of 31 babies with a gestational age of 23 + 6 - 29 + 6 weeks; group II comprised 75 children with a gestational age of 30 + 0 - 36 + 1 weeks. Plasma and urine concentrations of ADMA, SDMA, hArg, Arg, dimethylamine (DMA) which is the major urinary ADMA metabolite, as well as of nitrite and nitrate, the major NO metabolites, were determined by GC-MS and GC-MS/MS methods. ADMA and hArg plasma levels, but not the hArg/ADMA molar ratio, were significantly higher in group II than in group I: 895 ± 166 nM vs. 774 ± 164 nM (P = 0.001) for ADMA and 0.56 ± 0.04 µM vs. 0.48 ± 0.08 µM (P = 0.010) for hArg. There was no statistical difference between the groups with regard to urinary ADMA (12.2 ± 4.6 vs 12.8 ± 3.6 µmol/mmol creatinine; P = 0.61) and urinary SDMA. Urinary hArg, ADMA, SDMA correlated tightly with each other. Urinary excretion of DMA was slightly higher in group I compared to group II: 282 ± 44 vs. 247 ± 35 µmol/mmol creatinine (P = 0.004). The DMA/ADMA molar ratio in urine was tendentiously higher in neonates of group I compared to group II: 27 ± 13 vs. 20 ± 5 (P = 0.065). There were no differences between the groups with respect to Arg in plasma and to nitrite and nitrate in plasma and urine. In preterm neonates, ADMA and hArg biosynthesis increases with gestational age without remarkable changes in the hArg/ADMA ratio or NO biosynthesis. Our study suggests that ADMA and hArg are involved in foetal growth.


Asunto(s)
Arginina/análogos & derivados , Arginina/metabolismo , Desarrollo Fetal/fisiología , Homoarginina/fisiología , Óxido Nítrico/metabolismo , Arginina/fisiología , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Redes y Vías Metabólicas
12.
Indian J Plast Surg ; 50(1): 56-63, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28615811

RESUMEN

OBJECTIVES: In addition to its use as a volume filler, fat grafting may have a potential role in wound healing based on the concentration of growth factors in the lipoaspirate. In this study, we compare the quantitative and qualitative concentration of the various growth factors and adipokines using the Shippert or the Coleman techniques to prepare the lipoaspirate. METHODS: We measured leptin, adiponectin and the growth factors, i.e., acidic fibroblast growth factor (aFGF), basic FGF (bFGF), keratinocyte growth factor (KGF), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) by ELISA in solid and liquid fractions obtained with both techniques in human fat obtained with Coleman technique and Shippert technique. RESULTS: All of these peptides, except BMP-2, were detected in relevant quantities in the solid fraction. The Coleman but not the Shippert technique resulted in statistically higher adiponectin concentrations in the solid tissue fraction. The other four growth factors occurred in significantly higher concentrations in the solid fractions compared to the liquid fractions, independent of the processing technique. CONCLUSION: In summary, we demonstrated that KGF, aFGF, bFGF and VEGF, as well as leptin and adiponectin, are contained in fat suspensions obtained by liposuction and in the supernatant. Only the concentration of adiponectin was in the range reported to contribute to wound healing.

13.
Amino Acids ; 47(9): 1983-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25921952

RESUMEN

Free, non-protein bound asymmetrically guanidine-dimethylated arginine (ADMA) is an endogenous inhibitor of nitric oxide (NO) synthesis. Human erythrocytic membrane comprises considerable amounts of large (>50 kDa) ADMA-containing proteins. Location in the erythrocyte membrane and identity and physiological functions of ADMA-containing proteins are unrevealed. In healthy subjects, the concentration of free ADMA in heparinised plasma is almost identical to that of serum. We hypothesised that the robustness of free ADMA concentration in human blood is due to a remarkable resistance of erythrocytic ADMA-containing proteins against proteases. In vivo, we investigated the course of the concentration of ADMA in serum and EDTA plasma of a critically ill patient with acute kidney injury during extended haemodialysis. In vitro, we studied the effects of thermolysin, a useful experimental proteolytic enzyme of erythrocyte membrane proteins, on erythrocytic ADMA. The protein binding (PB) of ADMA to human serum albumin (HSA) was also determined. In these studies, ADMA was measured by a previously reported, fully validated GC-MS/MS method. We measured almost identical ADMA concentrations in plasma and serum samples of the patient. During dialysis, the circulating ADMA concentration decreased slowly and moderately indicating removal of this substance, which was however much less than expected from its low molecular weight (202 Da) and high water solubility. After dialysis, circulating ADMA concentration increased again, a phenomenon called rebound, and ADMA reached higher levels compared to the baseline. The PB value of ADMA to HSA was about 30 %. This surprisingly high PB value of ADMA to HSA may be an explanation for the rather poor dialysance of ADMA. Washed human erythrocytes suspended in phosphate-buffered physiological saline were found not to release appreciable amounts of free and ADMA-containing proteins. The lack of effect of coagulation or anticoagulation on the concentration of circulating free ADMA in humans is likely to be due to a remarkable resistance of ADMA-containing proteins in the erythrocyte membrane against proteases in vivo in humans. Our study suggests that free ADMA is released in the circulating blood at relatively high rates. The considerable PB of ADMA to HSA is likely to add to the apparently poor dialysability of ADMA. Other contributing factors could be redistribution of free ADMA between plasma and erythrocytes in favour of plasma ADMA and parallel formation of free ADMA from erythrocytic ADMA-containing proteins during haemodialysis.


Asunto(s)
Lesión Renal Aguda , Arginina/análogos & derivados , Proteolisis , Diálisis Renal , Albúmina Sérica/metabolismo , Termolisina/química , Lesión Renal Aguda/sangre , Lesión Renal Aguda/terapia , Arginina/sangre , Enfermedad Crítica , Femenino , Humanos , Masculino , Unión Proteica
14.
Amino Acids ; 47(9): 2023-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25957527

RESUMEN

Circulating and excretory L-homoarginine (hArg) and asymmetric dimethylarginine (ADMA) are cardiovascular risk factors. L-Arginine (Arg) is the common precursor of hArg and ADMA. This protocol describes gas chromatography-mass spectrometry (GC-MS) and gas chromatography-mass spectrometry-mass spectrometry (GC-MS/MS) methods for the quantitative determination of hArg, Arg and ADMA in biological samples, including human plasma, urine and sputum. Aliquots (10 µL) of native urine, plasma or serum ultrafiltrate (cutoff, 10 kDa), and acetone-deproteinized sputum samples are evaporated to dryness. Then, amino acids are derivatized to their methyl ester N-pentafluoropropionyl derivatives. In parallel, trideuteromethyl ester N-pentafluoropropionyl derivatives of hArg, Arg and ADMA are de novo synthesized from the unlabelled amino acids and used as internal standards. Alternatively, commercially available stable isotope-labeled analogs of hArg, Arg and ADMA are used as internal standards, and they are added to the native biological samples. Quantification is performed by selected ion monitoring in GC-MS and selected reaction monitoring in GC-MS/MS. By these protocols, unlabelled and stable isotope-labeled hArg, Arg and their metabolites including ADMA and ornithine can be measured equally accurately and precisely by GC-MS and GC-MS/MS in several different biological fluids in experimental and clinical settings.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Homoarginina/sangre , Homoarginina/orina , Esputo/metabolismo , Femenino , Humanos , Marcaje Isotópico , Masculino , Sensibilidad y Especificidad
15.
Amino Acids ; 47(9): 1837-45, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26055922

RESUMEN

The pathogenic hallmarks of multiple sclerosis (MS) and neuromyelitis optica (NMO) are cellular and humoral inflammatory infiltrates and subsequent demyelination, or astrocytic cell death in NMO, respectively. These processes are accompanied by disruption of the blood-brain barrier as regularly observed by gadolinium enhancement on magnetic resonance imaging. The role of the L-arginine/nitric oxide (NO) pathway in the pathophysiology of neuroinflammatory diseases, such as MS and NMO, remains unclear. In the present study, we measured the concentrations of the nitric oxide (NO) metabolites nitrate and nitrite, the endogenous substrates of NO synthase (NOS) L-arginine (Arg) and L-homoarginine (hArg), and asymmetric dimethylarginine (ADMA), the endogenous inhibitor of NOS activity, in the serum and cerebrospinal fluid (CSF) of patients with MS, NMO or other neurologic diseases (OND). MS (551 ± 23 nM, P = 0.004) and NMO (608 ± 51 nM, P = 0.006) patients have higher ADMA concentrations in serum than healthy controls (HC; 430 ± 24 nM). For MS, this finding was confirmed in CSF (685 ± 100 nM in relapsing-remitting multiple sclerosis, RRMS; 597 ± 51 nM in secondary progressive multiple sclerosis, SPMS) compared with OND (514 ± 37 nM; P = 0.003). Serum concentrations of Arg (61.1 ± 9.7 vs. 63.6 ± 4.9 µM, P = 0.760), hArg (2.62 ± 0.26 vs. 2.52 ± 0.23 µM, P = 0.891), nitrate (38.1 ± 2.2 vs. 38.1 ± 3.0 µM) and nitrite (1.37 ± 0.09 vs. 1.55 ± 0.03 µM) did not differ between MS and OND. Also, CSF concentrations of hArg (0.685 ± 0.100 µM in RRMS, 0.597 ± 0.051 µM in SPMS, 0.514 ± 0.037 µM in OND), nitrate (11.3 ± 0.6 vs. 10.5 ± 0.3 µM) and nitrite (2.84 ± 0.32 vs. 2.41 ± 0.11 µM) did not differ between the groups. In NMO patients, however, serum Arg (117 ± 11 vs. 64 ± 4.9 µM, P = 0.004), nitrate (29 ± 2.1 vs. 38 ± 3 µM, P = 0.03), and nitrite (1.09 ± 0.02 vs. 1.55 ± 0.033 µM, P < 0.0001) were significantly different as compared to OND. Symmetric dimethylarginine (SDMA) concentration did not differ in serum between MS and HC (779 ± 43 vs. 755 ± 58 nM, P = 0.681) or in CSF between MS and OND patients (237 ± 11 vs. 230 ± 17 nM, P = 0.217). Our study suggests a potential role for ADMA and Arg in neuroinflammatory diseases with diverse functions in MS and NMO. Higher ADMA synthesis may explain reduced NO availability in NMO. hArg and SDMA seem not to play an important role in MS and NMO.


Asunto(s)
Arginina/análogos & derivados , Homoarginina , Esclerosis Múltiple , Neuromielitis Óptica , Nitratos , Nitritos , Adulto , Arginina/sangre , Arginina/líquido cefalorraquídeo , Femenino , Homoarginina/sangre , Homoarginina/líquido cefalorraquídeo , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/líquido cefalorraquídeo , Neuromielitis Óptica/sangre , Neuromielitis Óptica/líquido cefalorraquídeo , Nitratos/sangre , Nitratos/líquido cefalorraquídeo , Nitritos/sangre , Nitritos/líquido cefalorraquídeo
16.
Amino Acids ; 47(9): 1865-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26123986

RESUMEN

High circulating levels of asymmetric dimethylarginine (ADMA) and low circulating levels of homoarginine (hArg) are known cardiovascular risk factors in adults. While in adults with type 1 diabetes mellitus (T1DM) circulating ADMA is significantly elevated, in children and adolescents the reported ADMA data are contradictory. In 102 children with T1DM and 95 healthy controls (HC) serving as controls, we investigated the L-arginine (Arg)/nitric oxide (NO) pathway. Children with T1DM were divided into two groups, i.e., in children with newly diagnosed diabetes mellitus [T1DM-ND; n = 10; age, 8.8 (4.4-11.2) years; HbA1c, 13 (8.9-13.9) %] and in those with long-term treatment [T1DM-T; n = 92; age, 12.5 (10.5-15.4) years; HbA1c, 8.0 (7.2-8.6) %]. The age of the HC was 11.3 (8-13.3) years. Amino acids and NO metabolites of the Arg/NO pathway, creatinine and the oxidative stress biomarker malondialdehyde (MDA) were measured by GC-MS or GC-MS/MS. Plasma hArg, ADMA and the hArg/ADMA molar ratio did not differ between the T1DM and HC groups. There was a significant difference between T1DM-T and HC with regard to plasma nitrite [0.53 (0.48-0.61) vs 2.05 (0.86-2.36) µM, P < 0.0001] as well as to urinary nitrite [0.09 (0.06-0.17) vs 0.22 (0.13-0.37) µmol/mmol creatinine, P < 0.0001]. Plasma, but not urinary nitrite, differed between T1DM-ND and HC [0.55 (0.50-0.66) vs 2.05 (0.86-2.36) µM, P < 0.0001]. Plasma MDA did not differ between the groups. The urinary nitrate-to-nitrite molar ratio (UNOXR), a measure of nitrite-dependent renal carbonic anhydrase (CA) activity, was higher in T1DM-T [1173 (738-1481), P < 0.0001] and T1DM-ND [1341 (1117-1615), P = 0.0007] compared to HC [540 (324-962)], but did not differ between T1DM-T and T1DM-ND (P = 0.272). The lower nitrite excretion in the children with T1DM may indicate enhanced renal CA-dependent nitrite reabsorption compared with healthy children. Yet, lower plasma nitrite concentration in the T1DM patients may have also contributed to the higher UNOXR. Patients' age correlated positively with plasma hArg and hArg/ADMA and urinary DMA/ADMA. Plasma ADMA and urinary ADMA, DMA, nitrite and nitrate correlated negatively with age of the T1DM-T children. Significant correlations were found between plasma hArg and plasma Arg (r = 0.468, P < 0.0001), and urinary DMA (r = -0.426, P = 0.0001), ADMA (r = -0.266, P = 0.021) and nitrate (r = -0.234, P = 0.043). Plasma hArg correlated positively with age at diagnosis (r = +0.337, P = 0.002). ADMA, but not hArg, correlated with HbA1c in T1DM-T (r = -0.418, P < 0.0001) and T1DM-ND (r = +0.879, P = 0.0016). The greatest differences between T1DM-T and T1DM-ND were observed for urinary ADMA, DMA/ADMA ratio, nitrite and nitrate. The Arg/NO pathway is altered in T1DM in childhood and adolescence, yet the role and the importance of hArg and ADMA in T1DM remain to be elucidated. In young T1DM patients, oxidative stress (lipid peroxidation) is not elevated.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Diabetes Mellitus Tipo 1/sangre , Homoarginina/sangre , Riñón/enzimología , Óxido Nítrico/sangre , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Riñón/patología , Peroxidación de Lípido , Masculino , Estrés Oxidativo , Estudios Prospectivos
17.
Amino Acids ; 47(9): 1875-83, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26123987

RESUMEN

Adult subjects with growth hormone (GH) deficiency (GHD) are known to have reduced life expectancy due to increased cardiovascular and cerebrovascular events. In adults, these events are associated with elevated circulating concentrations of asymmetric dimethylarginine (ADMA) which is an endogenous inhibitor of L-arginine (Arg)-derived nitric oxide (NO). Low circulating concentrations of homoarginine (hArg) emerged as a cardiovascular risk factor. In adults, hArg seems to antagonize ADMA. In the present work, we tested the hypothesis that children with short stature without or with GHD have altered Arg/NO pathway as compared to children with normal growth. We studied 66 short stature children (38 boys, 28 girls) aged 3.5-17.3 years, who underwent the routine L-Arginine Test to diagnose presence of GHD. GHD was confirmed in 47 children (GHD group; 30 boys, 17 girls) and was absent in the remaining 19 children (non-GHD group; 8 boys, 11 girls). In addition, we investigated 24 healthy age- and gender-matched children (10 boys, 14 girls) with normal growth. In EDTA plasma samples of all children, we determined by mass spectrometry-based methods the concentrations of Arg, hArg and ADMA, and calculated the Arg/ADMA and hArg/ADMA molar ratios. With respect to these biochemical parameters, we did not find statistically significant differences between the GHD and non-GHD groups. Comparing short with normal stature children, we found small differences regarding plasma hArg concentrations [mean ± SD; median (25th-75th percentile)]: 2.06 ± 0.52 µM; 2.12 (1.74-2.36) µM vs. 1.7 ± 0.5 µM; 1.6 (1.4-1.8) µM, P < 0.001. Compared to normal stature children, short stature children had considerably higher plasma concentrations of ADMA [0.77 ± 0.15 µM; 0.77 (0.66-0.85) µM vs. 0.57 ± 0.09 µM; 0.58 (0.50-0.63) µM, P < 0.001], but not of Arg [83.3 ± 19.2 µM; 82.2 (71.9-90.3) µM vs. 86.5 ± 17.8 µM; 84.8 (77.2-94.8) µM, P = 0.336], or the hArg/ADMA ratio [2.74 ± 0.76; 2.7 (2.2-3.1) vs. 3.1 ± 1.2; 2.85 (2.42-3.66), P = 0.161. hArg in the GHD group (r = 0.41, P = 0.004) and the hArg/ADMA ratio in both groups (r = 0.44, P = 0.002 in GHD; r = 0.55, P = 0.01 in non-GHD)], but not ADMA were positively correlated with insulin-like growth factor-1 (IGF-1). hArg and hArg/ADMA differed between girls and boys in the GHD and non-GHD groups but in the normal growth group. The hArg/ADMA ratio increased with age in all groups. Our study suggests that hArg and ADMA are involved in growth in the childhood, presumably in an antagonistic manner, with ADMA slowing and hArg accelerating growth.


Asunto(s)
Arginina/análogos & derivados , Trastornos del Crecimiento/sangre , Homoarginina/sangre , Hormona de Crecimiento Humana/deficiencia , Adolescente , Adulto , Arginina/sangre , Niño , Femenino , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/fisiopatología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino
18.
Amino Acids ; 47(9): 1853-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26066683

RESUMEN

The L-arginine/nitric oxide (L-Arg/NO) pathway regulates endothelial function and may play an important role in the pathogenesis of Duchenne muscular dystrophy (DMD). Yet, this pathway is poorly investigated in children suffering from DMD. Endothelial dysfunction can affect the perfusion of contracting muscles, thus leading to ischemia and hypoxia. In the present study, we tested the hypothesis that reduced NO production due to elevated synthesis of N (G),N (G)-dimethyl-L-arginine (asymmetric dimethylarginine, ADMA), an endogenous inhibitor of NO synthesis, is a possible pathophysiological mechanism for progressive intramuscular muscle ischemia and disturbed endothelial function in children with DMD. Given the possible antagonistic action of homoarginine (hArg) on ADMA, we also analyzed this amino acid. We investigated 55 male patients with DMD and 54 healthy male controls (HC; aged 11.9 ± 4.8 vs. 11.1 ± 4.9 years, mean ± SD). Urinary creatinine and metabolites of the L-Arg/NO pathway were measured in plasma and urine by GC-MS or GC-MS/MS. Urine levels of ADMA and its major urinary metabolite dimethylamine (DMA), nitrite and nitrate (P < 0.001 for all) and hArg (P = 0.002) were significantly higher in DMD patients compared to HC, while the urinary DMA/ADMA molar ratio was lower (P = 0.002). In plasma, nitrate (P < 0.001), hArg (P = 0.002) and the hArg/ADMA ratio (P < 0.001) were lower in DMD than in HC. In plasma, ADMA (631 ± 119 vs. 595 ± 129 nM, P = 0.149), arginine and nitrite did not differ between DMD and HC. In DMD, positive correlations between ADMA, DMA or nitrate excretion and the stage of disease (according to Vignos and Thompson) were found. In DMD patients on steroid medication, lower concentrations of ADMA in plasma, and of DMA, ADMA, nitrate and hArg in urine were observed compared to non-treated patients. The L-Arg/NO pathway is impaired in DMD patients, with the disease progression being clinically negatively correlated with the extent of impairment. One of the underlying mechanisms in DMD may involve insufficient antagonism of ADMA by hArg. Steroids, but not creatine supplementation, seems to improve the L-Arg/NO pathway in DMD.


Asunto(s)
Arginina/análogos & derivados , Glucocorticoides/administración & dosificación , Homoarginina , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne , Óxido Nítrico , Adolescente , Adulto , Arginina/sangre , Arginina/orina , Niño , Preescolar , Estudios Transversales , Homoarginina/sangre , Homoarginina/orina , Humanos , Lactante , Masculino , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/orina , Óxido Nítrico/sangre , Óxido Nítrico/orina , Proyectos Piloto
19.
Amino Acids ; 47(9): 1941-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26077715

RESUMEN

Asymmetric dimethylarginine (ADMA) is a key endogenous inhibitor of endothelial NO synthase that affects endothelial function, blood pressure and vascular remodeling. Increased plasma levels of ADMA are associated with worse outcome from cardiovascular disease. Due to endothelial dysfunction before and after kidney transplantation, renal transplant recipients (RTR) are at high risk for the alleged deleterious effects of ADMA. We investigated the associations of ADMA levels with all-cause mortality and graft failure in RTR. Plasma ADMA levels were determined in 686 stable outpatient RTR (57 % male, 53 ± 13 years), with a functioning graft for ≥1 year. Determinants of ADMA were evaluated with multivariate linear regression models. Associations between ADMA and mortality were assessed using multivariable Cox regression analyses. The strongest associations with plasma ADMA in the multivariable analyses were male gender, donor age, parathyroid hormone, NT-pro-BNP and use of calcium supplements. During a median follow-up of 3.1 [2.7-3.9] years, 79 (12 %) patients died and 45 (7 %) patients developed graft failure. ADMA was associated with increased all-cause mortality [HR 1.52 (95 % CI 1.26-1.83] per SD increase, P < 0.001], whereby associations remained upon adjustment for confounders. ADMA was associated with graft failure [HR 1.41 (1.08-1.83) per SD increase, P = 0.01]; however, upon addition of eGFR significance was lost. High levels of plasma ADMA are associated with increased mortality in RTR. Our findings connect disturbed NO metabolism with patient survival after kidney transplantation.


Asunto(s)
Arginina/análogos & derivados , Endotelio Vascular/metabolismo , Rechazo de Injerto/sangre , Rechazo de Injerto/mortalidad , Trasplante de Riñón , Modelos Biológicos , Adulto , Anciano , Arginina/sangre , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Tasa de Supervivencia
20.
Amino Acids ; 47(9): 1827-36, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26142633

RESUMEN

Renal transplant recipients (RTR) have an increased cardiovascular risk profile. Low levels of circulating homoarginine (hArg) are a novel risk factor for mortality and the progression of atherosclerosis. The kidney is known as a major source of hArg, suggesting that urinary excretion of hArg (UhArg) might be associated with mortality and graft failure in RTR. hArg was quantified by mass spectrometry in 24-h urine samples of 704 RTR (functioning graft ≥1 year) and 103 healthy subjects. UhArg determinants were identified with multivariable linear regression models. Associations of UhArg with all-cause mortality and graft failure were assessed using multivariable Cox regression analyses. UhArg excretion was significantly lower in RTR compared to healthy controls [1.62 (1.09-2.61) vs. 2.46 (1.65-4.06) µmol/24 h, P < 0.001]. In multivariable linear regression models, body surface area, diastolic blood pressure, eGFR, pre-emptive transplantation, serum albumin, albuminuria, urinary excretion of urea and uric acid and use of sirolimus were positively associated with UhArg, while donor age and serum phosphate were inversely associated (model R (2) = 0.43). During follow-up for 3.1 (2.7-3.9) years, 83 (12 %) patients died and 45 (7 %) developed graft failure. UhArg was inversely associated with all-cause mortality [hazard risk (HR) 0.52 (95 % CI 0.40-0.66), P < 0.001] and graft failure [HR 0.58 (0.42-0.81), P = 0.001]. These associations remained independent of potential confounders. High UhArg levels are associated with reduced all-cause mortality and graft failure in RTR. Kidney-derived hArg is likely to be of particular importance for proper maintenance of cardiovascular and renal systems.


Asunto(s)
Rechazo de Injerto/mortalidad , Rechazo de Injerto/orina , Homoarginina/orina , Trasplante de Riñón , Modelos Biológicos , Adulto , Factores de Edad , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Rechazo de Injerto/tratamiento farmacológico , Humanos , Masculino , Sirolimus/administración & dosificación , Tasa de Supervivencia , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA