RESUMEN
Leishmania parasites, causative agents of leishmaniasis, are currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania and Mundinia. The recently established subgenus Mundinia has a wide geographical distribution and contains five species, three of which have the potential to infect and cause disease in humans. While the other Leishmania subgenera are transmitted exclusively by phlebotomine sand flies (Diptera: Psychodidae), natural vectors of Mundinia remain uncertain. This study investigates the potential of sand flies and biting midges of the genus Culicoides (Diptera: Ceratopogonidae) to transmit Leishmania parasites of the subgenus Mundinia. Sand flies (Phlebotomus argentipes, P. duboscqi and Lutzomyia migonei) and Culicoides biting midges (Culicoides sonorensis) were exposed to five Mundinia species through a chicken skin membrane and dissected at specific time intervals post bloodmeal. Potentially infected insects were also allowed to feed on ear pinnae of anaesthetized BALB/c mice and the presence of Leishmania DNA was subsequently confirmed in the mice using polymerase chain reaction analyses. In C. sonorensis, all Mundinia species tested were able to establish infection at a high rate, successfully colonize the stomodeal valve and produce a higher proportion of metacyclic forms than in sand flies. Subsequently, three parasite species, L. martiniquensis, L. orientalis and L. sp. from Ghana, were transmitted to the host mouse ear by C. sonorensis bite. In contrast, transmission experiments entirely failed with P. argentipes, although colonisation of the stomodeal valve was observed for L. orientalis and L. martiniquensis and metacyclic forms of L. orientalis were recorded. This laboratory-based transmission of Mundinia species highlights that Culicoides are potential vectors of members of this ancestral subgenus of Leishmania and we suggest further studies in endemic areas to confirm their role in the lifecycles of neglected pathogens.
Asunto(s)
Ceratopogonidae/parasitología , Insectos Vectores/parasitología , Leishmania , Leishmaniasis/transmisión , Animales , RatonesRESUMEN
The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite's life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies.
Asunto(s)
Flagelos/metabolismo , Leishmania/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/metabolismo , Psychodidae/parasitología , Animales , Flagelos/genética , Leishmania/genética , Proteoma/genética , Proteínas Protozoarias/genéticaRESUMEN
BACKGROUND: Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. RESULTS: All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as ß-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. CONCLUSIONS: We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Leishmania/clasificación , Proteínas Protozoarias/genética , Secuenciación Completa del Genoma/métodos , Evolución Molecular , Regulación de la Expresión Génica , Tamaño del Genoma , Genómica , Especificidad del Huésped , Leishmania/genética , Filogenia , Ploidias , Secuenciación del ExomaRESUMEN
BACKGROUND: Several new species of Leishmania have recently emerged in Europe, probably as the result of global changes and increased human migration from endemic areas. In this study, we tested whether two sand fly species, the Western Mediterranean Phlebotomus perniciosus and the Eastern Mediterranean P. tobbi, are competent vectors of L. donovani, L. major and L. martiniquensis. METHODOLOGY/PRINCIPAL FINDINGS: Sand flies were infected through the chick skin membrane using Leishmania species and strains of various geographical origins. Leishmania infections were evaluated by light microscopy and qPCR, and the representation of morphological forms was assessed from Giemsa-stained gut smears. Neither P. perniciosus nor P. tobbi supported the development of L. martiniquensis, but L. major and L. donovani in both species survived defecation of blood meal remnants, colonized the stomodeal valve and produced metacyclic stages. The results with L donovani have shown that infection rates in sand flies can be strain-specific; therefore, to determine vector competence or refractoriness, it is optimal to test at least two strains of Leishmania. CONCLUSIONS, SIGNIFICANCE: Both sand fly species tested are potential vectors of L. donovani and L. major in Mediterranean area. However, further studies will be needed to identify European vectors of L. martiniquensis and to test the ability of other European sand fly species to transmit L. major, L. donovani, L. tropica and L. infantum.
Asunto(s)
Insectos Vectores , Leishmania , Phlebotomus , Animales , Phlebotomus/parasitología , Phlebotomus/fisiología , Europa (Continente) , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Leishmania/fisiología , Leishmania/clasificación , Leishmania/genética , Femenino , Pollos/parasitología , Leishmaniasis/transmisión , Leishmaniasis/parasitología , HumanosRESUMEN
Leishmania, the dixenous trypanosomatid parasites, are the causative agents of leishmaniasis currently divided into four subgenera: Leishmania, Viannia, Sauroleishmania, and the recently described Mundinia, consisting of six species distributed sporadically all over the world infecting humans and/or animals. These parasites infect various mammalian species and also cause serious human diseases, but their reservoirs are unknown. Thus, adequate laboratory models are needed to enable proper research of Mundinia parasites. In this complex study, we compared experimental infections of five Mundinia species (L. enriettii, L. macropodum, L. chancei, L. orientalis, and four strains of L. martiniquensis) in three rodent species: BALB/c mouse, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus). Culture-derived parasites were inoculated intradermally into the ear pinnae and progress of infection was monitored for 20 weeks, when the tissues and organs of animals were screened for the presence and quantity of Leishmania. Xenodiagnoses with Phlebotomus duboscqi were performed at weeks 5, 10, 15 and 20 post-infection to test the infectiousness of the animals throughout the experiment. BALB/c mice showed no signs of infection and were not infectious to sand flies, while Chinese hamsters and steppe lemmings proved susceptible to all five species of Mundinia tested, showing a wide spectrum of disease signs ranging from asymptomatic to visceral. Mundinia induced significantly higher infection rates in steppe lemmings compared to Chinese hamsters, and consequently steppe lemmings were more infectious to sand flies: In all groups tested, they were infectious from the 5th to the 20th week post infection. In conclusion, we identified two rodent species, Chinese hamster (Cricetulus griseus) and steppe lemming (Lagurus lagurus), as candidates for laboratory models for Mundinia allowing detailed studies of these enigmatic parasites. Furthermore, the long-term survival of all Mundinia species in steppe lemmings and their infectiousness to vectors support the hypothesis that some rodents have the potential to serve as reservoir hosts for Mundinia.
Asunto(s)
Arvicolinae , Modelos Animales de Enfermedad , Leishmania , Leishmaniasis , Ratones Endogámicos BALB C , Animales , Leishmania/clasificación , Leishmaniasis/parasitología , Ratones , Cricetinae , Arvicolinae/parasitología , Cricetulus , FemeninoRESUMEN
Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.
RESUMEN
Parasites of the genus Porcisia, together with the genus Endotrypanum, form a sister clade to the species-rich and medically important genus Leishmania. Both Porcisia species, P. hertigi and P. deanei, are dixenous parasites of Neotropical porcupines. Almost 50 years after their first discovery, knowledge of their life cycle remains poor and their insect vectors are unknown. Because competent vectors of their closest phylogenetic relatives, genera Endotrypanum and Leishmania, are phlebotomine sand flies (Diptera: Psychodidae) and/or biting midges (Diptera: Ceratopogonidae), we examined here the potential of both sand flies and biting midges to transmit Porcisia parasites. The insects (Lutzomyia longipalpis, L. migonei and Culicoides sonorensis) were exposed to parasites through the chicken skin membrane and dissected at various time intervals post bloodmeal. Potentially infected females were also allowed to feed on the ears of anaesthetized BALB/c mice and the presence of parasite DNA was subsequently confirmed in the mice by PCR. Porcisia hertigi did not survive defecation in L. longipalpis or L. migonei, suggesting that these sand fly species are unlikely to serve as natural vectors of this parasite. Similarly, P. hertigi infections were lost in Culicoides midges. In contrast, mature P. deanei infections developed in 51-61% of L. longipalpis females, 7.3% of L. migonei females and 7.7% of Culicoides sonorensis females. In all three vector species, P. deanei colonized predominantly Malpighian tubules and produced metacyclic infective forms. Transmission of P. daenei to BALB/c mice was demonstrated via the prediuresis of L. longipalpis females. This mode of transmission, as well the colonization of Malpighian tubules as the dominant tissue of the vector, is unique among trypanosomatids. In conclusion, we demonstrated the vector competence of L. longipalpis for P. deanei but not for P. hertigi, and further studies are needed to evaluate competence of other Neotropical vectors for these neglected parasites.
Asunto(s)
Leishmania , Psychodidae , Animales , Femenino , Insectos Vectores , Estadios del Ciclo de Vida , Ratones , FilogeniaRESUMEN
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Asunto(s)
Leishmania guyanensis , Leishmaniasis Cutánea , Parásitos , Animales , Ciclo Celular , Leishmaniavirus , Lípidos , Ratones , Fosfatidato Fosfatasa/genéticaRESUMEN
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
Asunto(s)
Catalasa/genética , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/patogenicidad , Estadios del Ciclo de Vida/genética , Proteínas Protozoarias/genética , Factores de Virulencia/genética , Animales , Catalasa/metabolismo , Células Cultivadas , Femenino , Leishmania mexicana/genética , Ratones , Ratones Endogámicos BALB C , Psychodidae/parasitología , Teschovirus/genética , Virulencia , Factores de Virulencia/metabolismoRESUMEN
Leishmaniasis is widely regarded as a vaccine-preventable disease, but the costs required to reach pivotal Phase 3 studies and uncertainty about which candidate vaccines should be progressed into human studies significantly limits progress in vaccine development for this neglected tropical disease. Controlled human infection models (CHIMs) provide a pathway for accelerating vaccine development and to more fully understand disease pathogenesis and correlates of protection. Here, we describe the isolation, characterization and GMP manufacture of a new clinical strain of Leishmania major. Two fresh strains of L. major from Israel were initially compared by genome sequencing, in vivo infectivity and drug sensitivity in mice, and development and transmission competence in sand flies, allowing one to be selected for GMP production. This study addresses a major roadblock in the development of vaccines for leishmaniasis, providing a key resource for CHIM studies of sand fly transmitted cutaneous leishmaniasis.
Asunto(s)
Leishmania major/fisiología , Leishmaniasis Cutánea/parasitología , Animales , Modelos Animales de Enfermedad , Humanos , Insectos Vectores/parasitología , Israel , Leishmania major/genética , Leishmania major/crecimiento & desarrollo , Leishmaniasis Cutánea/transmisión , Ratones Endogámicos BALB C , Parásitos/genética , Filogenia , Psychodidae/parasitología , Secuenciación Completa del GenomaRESUMEN
BACKGROUND: Leishmaniasis is a human and animal disease caused by parasites of the genus Leishmania, which is now divided into four subgenera, Leishmania, Viannia, Sauroleishmania and Mundinia. Subgenus Mundinia, established in 2016, is geographically widely dispersed, its distribution covers all continents, except Antarctica. It consists of 5 species; L. enriettii and L. macropodum are parasites of wild mammals while L. martiniquensis, L. orientalis and an unnamed Leishmania sp. from Ghana are infectious to humans. There is very little information on natural reservoir hosts and vectors for any Mundinia species. METHODS: Experimental infections of guinea pigs with all five Mundinia species were performed. Animals were injected intradermally with 107 culture-derived promastigotes into both ear pinnae. The courses of infections were monitored weekly; xenodiagnoses were performed at weeks 4 and 8 post-infection using Lutzomyia migonei. The distribution of parasites in different tissues was determined post-mortem by conventional PCR. RESULTS: No significant differences in weight were observed between infected animals and the control group. Animals infected with L. enriettii developed temporary lesions at the site of inoculation and were infectious to Lu. migonei in xenodiagnoses. Animals infected with L. martiniquensis and L. orientalis developed temporary erythema and dry lesions at the site of inoculation, respectively, but were not infectious to sand flies. Guinea pigs infected by L. macropodum and Leishmania sp. from Ghana showed no signs of infection during experiments, were not infectious to sand flies and leishmanial DNA was not detected in their tissue samples at the end of experiments at week 12 post-inoculation. CONCLUSIONS: According to our results, guinea pigs are not an appropriate model organism for studying Mundinia species other than L. enriettii. We suggest that for better understanding of L. (Mundinia) biology it is necessary to focus on other model organisms.
Asunto(s)
Modelos Animales de Enfermedad , Leishmania/crecimiento & desarrollo , Leishmaniasis/veterinaria , Animales , Femenino , Cobayas , Leishmania/clasificación , Leishmaniasis/parasitologíaRESUMEN
Visceral leishmaniasis caused by Leishmania donovani is regarded as mostly anthroponotic, but a role for animal reservoir hosts in transmission has been suggested in East Africa. Field studies in this region have shown the presence of this parasite in several mammalian species, including rodents of the genera Arvicanthis and Mastomys. Further, the natural reservoirs of Leishmania (Mundinia) sp. causing human cutaneous disease in Ghana, West Africa, are unknown. This study assessed the potential role of the Sub-Saharan rodents Arvicanthis neumanni, A. niloticus and Mastomys natalensis as hosts of L. donovani and L. sp. from Ghana, based on experimental infections of animals and xenodiagnoses. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to Phlebotomus orientalis was tested by pair-wise comparisons. None of the animals inoculated with L. donovani were infectious to P. orientalis females, although, in some animals, parasites were detected by PCR even 30 weeks post infection. Skin infections were characterized by low numbers of parasites while high parasite burdens were present in spleen, liver and lymph nodes only. Therefore, wild Arvicanthis and Mastomys found infected with L. donovani, should be considered parasite sinks rather than parasite reservoirs. This is indirectly supported also by results of host choice experiments with P. orientalis in which females preferred humans over both Arvicanthis and Mastomys, and their feeding rates on rodents ranged from 1.4 to 5.8% only. Therefore, the involvement of these rodents in transmission of L. donovani by P. orientalis is very unlikely. Similarly, poor survival of Leishmania parasites in the studied rodents and negative results of xenodiagnostic experiments do not support the involvement of Arvicanthis and Mastomys spp. in the transmission cycle of L. sp. from Ghana.
RESUMEN
Cutaneous leishmaniasis caused by Leishmania major is a typical zoonosis circulating in rodents. In Sub-Saharan Africa the reservoirs remain to be identified, although L. major has been detected in several rodent species including members of the genera Arvicanthis and Mastomys. However, differentiation of true reservoir hosts from incidental hosts requires in-depth studies both in the field and in the laboratory, with the best method for testing the infectiousness of hosts to biting vectors being xenodiagnosis. Here we studied experimental infections of three L. major strains in Arvicanthis neumanni, A. niloticus and Mastomys natalensis; the infections were initiated either with sand fly-derived or with culture-derived Leishmania promastigotes. Inoculated rodents were monitored for several months and tested by xenodiagnoses for their infectiousness to Phlebotomus duboscqi, the natural vector of L. major in Sub-Saharan Africa. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to P. duboscqi was tested by pair-wise comparisons. Three L. major strains used significantly differed in infectivity: the Middle Eastern strain infected a low proportion of rodents, while two Sub-Saharan isolates (LV109, LV110) infected a high percentage of animals and LV110 also produced higher parasite loads in all host species. All three rodent species maintained parasites of the LV109 strain for 20-25 weeks and were able to infect P. duboscqi without apparent health complications: infected animals showed only temporary swellings or changes of pigmentation at the site of inoculation. However, the higher infection rates, more generalized distribution of parasites and longer infectiousness period to sand flies in M. natalensis suggest that this species plays the more important reservoir role in the life cycle of L. major in Sub-Saharan Africa. Arvicanthis species may serve as potential reservoirs in seasons/periods of low abundance of Mastomys.