Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(11): 1716-1728, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813990

RESUMEN

Engineered transactivation domains (TADs) combined with programmable DNA binding platforms have revolutionized synthetic transcriptional control. Despite recent progress in programmable CRISPR-Cas-based transactivation (CRISPRa) technologies, the TADs used in these systems often contain poorly tolerated elements and/or are prohibitively large for many applications. Here, we defined and optimized minimal TADs built from human mechanosensitive transcription factors. We used these components to construct potent and compact multipartite transactivation modules (MSN, NMS and eN3x9) and to build the CRISPR-dCas9 recruited enhanced activation module (CRISPR-DREAM) platform. We found that CRISPR-DREAM was specific and robust across mammalian cell types, and efficiently stimulated transcription from diverse regulatory loci. We also showed that MSN and NMS were portable across Type I, II and V CRISPR systems, transcription activator-like effectors and zinc finger proteins. Further, as proofs of concept, we used dCas9-NMS to efficiently reprogram human fibroblasts into induced pluripotent stem cells and demonstrated that mechanosensitive transcription factor TADs are efficacious and well tolerated in therapeutically important primary human cell types. Finally, we leveraged the compact and potent features of these engineered TADs to build dual and all-in-one CRISPRa AAV systems. Altogether, these compact human TADs, fusion modules and delivery architectures should be valuable for synthetic transcriptional control in biomedical applications.


Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Animales , Humanos , Activación Transcripcional , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fibroblastos/metabolismo , Mamíferos/metabolismo
2.
Mol Ther Methods Clin Dev ; 32(3): 101316, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39282077

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce the expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a genetic priming method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor interferon response factor 1 (IRF1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFN-γ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFN-γ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.

3.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370626

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a 'genetic priming' method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor IRF1 (interferon response factor 1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFNγ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFNγ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.

4.
bioRxiv ; 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39345554

RESUMEN

Engineering histone acylation states can inform mechanistic epigenetics and catalyze therapeutic epigenome editing opportunities. Here, we developed engineered lysine acyltransferases that enable the programmable deposition of acetylation and longer-chain acylations. We show that targeting an engineered lysine crotonyltransferase results in weak levels of endogenous enhancer activation yet retains potency when targeted to promoters. We further identify a single mutation within the catalytic core of human p300 that preserves enzymatic activity while substantially reducing cytotoxicity, enabling improved viral delivery. We leveraged these capabilities to perform single-cell CRISPR activation screening and map enhancers to the genes they regulate in situ. We also discover acylation-specific interactions and find that recruitment of p300, regardless of catalytic activity, to prime editing sites can improve editing efficiency. These new programmable epigenome editing tools and insights expand our ability to understand the mechanistic role of lysine acylation in epigenetic and cellular processes and perform functional genomic screens.

5.
ACS Chem Biol ; 16(2): 264-269, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33492128

RESUMEN

Electrophilic heterocycles offer attractive features as covalent fragments for inhibitor and probe development. A focused library of heterocycles for which protonation can enhance reactivity (called "switchable electrophiles") is screened for inhibition of the proposed drug target dimethylarginine dimethylaminohydrolase (DDAH). Several novel covalent fragments are identified: 4-chloroquinoline, 4-bromopyridazine, and 4,4-dipyridylsulfide. Mechanistic studies of DDAH inactivation by 4,4-dipyridylsulfide reveal selective covalent S-pyridinylation of the active-site Cys through catalysis by a neighboring Asp residue. Inactivation (kinact/KI = 0.33 M-1 s-1) proceeds with release of 4-thiopyridone (0.78 equiv), and structure-activity relationships reveal that the leaving group pKa can be modulated to tune reactivity. The use of a "switchable electrophile" strategy helps impart selectivity, even to fragment-sized modifiers. Identification of 4,4-dipyridylsulfide analogs as inactivators offers an easily tunable covalent fragment with multiple derivatization sites on both the leaving and staying groups.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Piridinas/química , Sulfuros/química , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Dominio Catalítico , Pruebas de Enzimas , Inhibidores Enzimáticos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Pseudomonas aeruginosa/enzimología , Piridinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Relación Estructura-Actividad , Sulfuros/metabolismo
6.
Front Physiol ; 9: 886, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30065656

RESUMEN

Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30-49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA