Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 21(26): 5417-28, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22965875

RESUMEN

Human prion diseases are a heterogeneous group of fatal neurodegenerative disorders, characterized by the deposition of the partially protease-resistant prion protein (PrP(res)), astrocytosis, neuronal loss and spongiform change in the brain. Among inherited forms that represent 15% of patients, different phenotypes have been described depending on the variations detected at different positions within the prion protein gene. Here, we report a new mechanism governing the phenotypic variability of inherited prion diseases. First, we observed that the substitution at residue 211 with either Gln or Asp leads to distinct disorders at the clinical, neuropathological and biochemical levels (Creutzfeldt-Jakob disease or Gerstmann-Sträussler-Scheinker syndrome with abundant amyloid plaques and tau neurofibrillar pathology). Then, using molecular dynamics simulations and biophysical characterization of mutant proteins and an in vitro model of PrP conversion, we found evidence that each substitution impacts differently the stability of PrP and its propensity to produce different protease resistant fragments that may contribute to the phenotypical switch. Thus, subtle differences in the PrP primary structure and stability are sufficient to control amyloid plaques formation and tau abnormal phosphorylation and fibrillation. This mechanism is unique among neurodegenerative disorders and is consistent with the prion hypothesis that proposes a conformational change as the key pathological event in prion disorders.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Priones/genética , Sustitución de Aminoácidos , Clonación Molecular , Síndrome de Creutzfeldt-Jakob/patología , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Fenotipo , Fosforilación , Placa Amiloide/genética , Placa Amiloide/metabolismo , Priones/metabolismo , Conformación Proteica
2.
Comput Struct Biotechnol J ; 18: 532-547, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32206212

RESUMEN

N-terminal acetyltransferases (NATs) belong to the superfamily of acetyltransferases. They are enzymes catalysing the transfer of an acetyl group from acetyl coenzyme A to the N-terminus of polypeptide chains. N-terminal acetylation is one of the most common protein modifications. To date, not much is known on the molecular basis for the exclusive substrate specificity of NATs. All NATs share a common fold called GNAT. A characteristic of NATs is the ß6ß7 hairpin loop covering the active site and forming with the α1α2 loop a narrow tunnel surrounding the catalytic site in which cofactor and polypeptide meet and exchange an acetyl group. We investigated the dynamics-function relationships of all available structures of NATs covering the three domains of Life. Using an elastic network model and normal mode analysis, we found a common dynamics pattern conserved through the GNAT fold; a rigid V-shaped groove formed by the ß4 and ß5 strands and splitting the fold in two dynamical subdomains. Loops α1α2, ß3ß4 and ß6ß7 all show clear displacements in the low frequency normal modes. We characterized the mobility of the loops and show that even limited conformational changes of the loops along the low-frequency modes are able to significantly change the size and shape of the ligand binding sites. Based on the fact that these movements are present in most low-frequency modes, and common to all NATs, we suggest that the α1α2 and ß6ß7 loops may regulate ligand uptake and the release of the acetylated polypeptide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA