Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 55(5): 827-846.e10, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35483355

RESUMEN

Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.


Asunto(s)
Mycobacterium tuberculosis , Fibrosis Pulmonar , Tuberculosis , Animales , Ecosistema , Granuloma , Pulmón , Macaca fascicularis , Fibrosis Pulmonar/patología
2.
Cell ; 155(6): 1296-308, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24315099

RESUMEN

Bacteria that cause disease rely on their ability to counteract and overcome host defenses. Here, we present a genome-scale study of Mycobacterium tuberculosis (Mtb) that uncovers the bacterial determinants of surviving host immunity, sets of genes we term "counteractomes." Through this analysis, we found that CD4 T cells attempt to contain Mtb growth by starving it of tryptophan--a mechanism that successfully limits infections by Chlamydia and Leishmania, natural tryptophan auxotrophs. Mtb, however, can synthesize tryptophan under stress conditions, and thus, starvation fails as an Mtb-killing mechanism. We then identify a small-molecule inhibitor of Mtb tryptophan synthesis, which converts Mtb into a tryptophan auxotroph and restores the efficacy of a failed host defense. Together, our findings demonstrate that the Mtb immune counteractomes serve as probes of host immunity, uncovering immune-mediated stresses that can be leveraged for therapeutic discovery.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Mycobacterium tuberculosis/metabolismo , Triptófano/biosíntesis , Tuberculosis/inmunología , Tuberculosis/microbiología , Animales , Vías Biosintéticas/efectos de los fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/tratamiento farmacológico , Factores de Virulencia/metabolismo , ortoaminobenzoatos/farmacología
3.
J Immunol ; 210(10): 1531-1542, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37000471

RESUMEN

We used a mouse model to study how Mycobacterium tuberculosis subverts host defenses to persist in macrophages despite immune pressure. CD4 T cells can recognize macrophages infected with a single bacillus in vitro. Under identical conditions, CD8 T cells inefficiently recognize infected macrophages and fail to restrict M. tuberculosis growth, although they can inhibit M. tuberculosis growth during high-burden intracellular infection. We show that high intracellular M. tuberculosis numbers cause macrophage death, leading other macrophages to scavenge cellular debris and cross-present the TB10.4 Ag to CD8 T cells. Presentation by infected macrophages requires M. tuberculosis to have a functional ESX-1 type VII secretion system. These data indicate that phagosomal membrane damage and cell death promote MHC class I presentation of the immunodominant Ag TB10.4 by macrophages. Although this mode of Ag presentation stimulates cytokine production that we presume would be host beneficial, killing of uninfected cells could worsen immunopathology. We suggest that shifting the focus of CD8 T cell recognition to uninfected macrophages would limit the interaction of CD8 T cells with infected macrophages and impair CD8 T cell-mediated resolution of tuberculosis.


Asunto(s)
Bacillus , Mycobacterium tuberculosis , Tuberculosis , Sistemas de Secreción Tipo VII , Ratones , Animales , Sistemas de Secreción Tipo VII/metabolismo , Antígenos Bacterianos , Bacillus/metabolismo , Linfocitos T CD8-positivos , Macrófagos
4.
BMC Genomics ; 23(1): 647, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096729

RESUMEN

BACKGROUND: Cynomolgus macaque (Macaca fascicularis) is an attractive animal model for the study of human disease and is extensively used in biomedical research. Cynomolgus macaques share behavioral, physiological, and genomic traits with humans and recapitulate human disease manifestations not observed in other animal species. To improve the use of the cynomolgus macaque model to investigate immune responses, we defined and characterized the T cell receptor (TCR) repertoire. RESULT: We identified and analyzed the alpha (TRA), beta (TRB), gamma (TRG), and delta (TRD) TCR loci of the cynomolgus macaque. The expressed repertoire was determined using 22 unique lung samples from Mycobacterium tuberculosis infected cynomolgus macaques by single cell RNA sequencing. Expressed TCR alpha (TRAV) and beta (TRBV) variable region genes were enriched and identified using gene specific primers, which allowed their functional status to be determined. Analysis of the primers used for cynomolgus macaque TCR variable region gene enrichment showed they could also be used to amplify rhesus macaque (M. mulatta) variable region genes. CONCLUSION: The genomic organization of the cynomolgus macaque has great similarity with the rhesus macaque and they shared > 90% sequence similarity with the human TCR repertoire. The identification of the TCR repertoire facilitates analysis of T cell immunity in cynomolgus macaques.


Asunto(s)
Genoma , Mycobacterium tuberculosis , Animales , Genómica , Humanos , Macaca fascicularis/genética , Macaca mulatta/genética , Mycobacterium tuberculosis/genética
5.
PLoS Pathog ; 16(6): e1008621, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32544188

RESUMEN

During tuberculosis, lung myeloid cells have two opposing roles: they are an intracellular niche occupied by Mycobacterium tuberculosis, and they restrict bacterial replication. Lung myeloid cells from mice infected with yellow-fluorescent protein expressing M. tuberculosis were analyzed by flow cytometry and transcriptional profiling to identify the cell types infected and their response to infection. CD14, CD38, and Abca1 were expressed more highly by infected alveolar macrophages and CD11cHi monocyte-derived cells compared to uninfected cells. CD14, CD38, and Abca1 "triple positive" (TP) cells had not only the highest infection rates and bacterial loads, but also a strong interferon-γ signature and nitric oxide synthetase-2 production indicating recognition by T cells. Despite evidence of T cell recognition and appropriate activation, these TP macrophages are a cellular compartment occupied by M. tuberculosis long-term. Defining the niche where M. tuberculosis resists elimination promises to provide insight into why inducing sterilizing immunity is a formidable challenge.


Asunto(s)
Antígenos CD11/inmunología , Macrófagos Alveolares , Monocitos , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , ADP-Ribosil Ciclasa 1/genética , ADP-Ribosil Ciclasa 1/inmunología , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/inmunología , Animales , Antígenos CD11/genética , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/microbiología , Monocitos/patología , Mycobacterium tuberculosis/genética , Linfocitos T/inmunología , Linfocitos T/microbiología , Linfocitos T/patología , Tuberculosis/genética , Tuberculosis/patología
6.
PLoS Pathog ; 16(10): e1009000, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33075106

RESUMEN

CD8 T cells provide limited protection against Mycobacterium tuberculosis (Mtb) infection in the mouse model. As Mtb causes chronic infection in mice and humans, we hypothesize that Mtb impairs T cell responses as an immune evasion strategy. TB10.4 is an immunodominant antigen in people, nonhuman primates, and mice, which is encoded by the esxH gene. In C57BL/6 mice, 30-50% of pulmonary CD8 T cells recognize the TB10.44-11 epitope. However, TB10.4-specific CD8 T cells fail to recognize Mtb-infected macrophages. We speculate that Mtb elicits immunodominant CD8 T cell responses to antigens that are inefficiently presented by infected cells, thereby focusing CD8 T cells on nonprotective antigens. Here, we leverage naturally occurring polymorphisms in esxH, which frequently occur in lineage 1 strains, to test this "decoy hypothesis". Using the clinical isolate 667, which contains an EsxHA10T polymorphism, we observe a drastic change in the hierarchy of CD8 T cells. Using isogenic Erd.EsxHA10T and Erd.EsxHWT strains, we prove that this polymorphism alters the hierarchy of immunodominant CD8 T cell responses. Our data are best explained by immunodomination, a mechanism by which competition for APC leads to dominant responses suppressing subdominant responses. These results were surprising as the variant epitope can bind to H2-Kb and is recognized by TB10.4-specific CD8 T cells. The dramatic change in TB10.4-specific CD8 responses resulted from increased proteolytic degradation of A10T variant, which destroyed the TB10.44-11epitope. Importantly, this polymorphism affected T cell priming and recognition of infected cells. These data support a model in which nonprotective CD8 T cells become immunodominant and suppress subdominant responses. Thus, polymorphisms between clinical Mtb strains, and BCG or H37Rv sequence-based vaccines could lead to a mismatch between T cells that are primed by vaccines and the epitopes presented by infected cells. Reprograming host immune responses should be considered in the future design of vaccines.


Asunto(s)
Antígenos Bacterianos/inmunología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Animales , Antígenos Bacterianos/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Tuberculosis/inmunología
7.
Nat Immunol ; 11(8): 751-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20622882

RESUMEN

The fate of infected macrophages has an essential role in protection against Mycobacterium tuberculosis by regulating innate and adaptive immunity. M. tuberculosis exploits cell necrosis to exit from macrophages and spread. In contrast, apoptosis, which is characterized by an intact plasma membrane, is an innate mechanism that results in lower bacterial viability. Virulent M. tuberculosis inhibits apoptosis and promotes necrotic cell death by inhibiting production of prostaglandin E(2). Here we show that by activating the 5-lipoxygenase pathway, M. tuberculosis not only inhibited apoptosis but also prevented cross-presentation of its antigens by dendritic cells, which impeded the initiation of T cell immunity. Our results explain why T cell priming in response to M. tuberculosis is delayed and emphasize the importance of early immunity.


Asunto(s)
Dinoprostona/antagonistas & inhibidores , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Inmunidad Adaptativa/inmunología , Animales , Presentación de Antígeno , Antígenos Bacterianos/inmunología , Apoptosis/inmunología , Araquidonato 5-Lipooxigenasa/inmunología , Araquidonato 5-Lipooxigenasa/metabolismo , Células Dendríticas/inmunología , Dinoprostona/biosíntesis , Dinoprostona/inmunología , Modelos Animales de Enfermedad , Activación Enzimática , Inmunidad Innata/inmunología , Inhibidores de la Lipooxigenasa , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Noqueados , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Necrosis , Transducción de Señal , Tuberculosis/metabolismo , Tuberculosis/microbiología , Tuberculosis/patología , Virulencia
8.
Nat Immunol ; 10(8): 899-906, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19561612

RESUMEN

Induction of macrophage necrosis is a strategy used by virulent Mycobacterium tuberculosis (Mtb) to avoid innate host defense. In contrast, attenuated Mtb causes apoptosis, which limits bacterial replication and promotes T cell cross-priming by antigen-presenting cells. Here we show that Mtb infection causes plasma membrane microdisruptions. Resealing of these lesions, a process crucial for preventing necrosis and promoting apoptosis, required translocation of lysosomal and Golgi apparatus-derived vesicles to the plasma membrane. Plasma membrane repair depended on prostaglandin E(2) (PGE(2)), which regulates synaptotagmin 7 (Syt-7), the calcium sensor involved in the lysosome-mediated repair mechanism. By inducing production of lipoxin A(4) (LXA(4)), which blocks PGE(2) biosynthesis, virulent Mtb prevented membrane repair and induced necrosis. Thus, virulent Mtb impairs macrophage plasma membrane repair to evade host defenses.


Asunto(s)
Membrana Celular/patología , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Animales , Apoptosis , Membrana Celular/inmunología , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Células Cultivadas , Dinoprostona/metabolismo , Aparato de Golgi/fisiología , Humanos , Lipoxinas/metabolismo , Lisosomas/fisiología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Necrosis , Sinaptotagminas/metabolismo , Virulencia
9.
Nature ; 577(7788): 31-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894152
10.
PLoS Pathog ; 14(5): e1007060, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29782535

RESUMEN

Containment of Mycobacterium tuberculosis (Mtb) infection requires T cell recognition of infected macrophages. Mtb has evolved to tolerate, evade, and subvert host immunity. Despite a vigorous and sustained CD8+ T cell response during Mtb infection, CD8+ T cells make limited contribution to protection. Here, we ask whether the ability of Mtb-specific T cells to restrict Mtb growth is related to their capacity to recognize Mtb-infected macrophages. We derived CD8+ T cell lines that recognized the Mtb immunodominant epitope TB10.44-11 and compared them to CD4+ T cell lines that recognized Ag85b240-254 or ESAT63-17. While the CD4+ T cells recognized Mtb-infected macrophages and inhibited Mtb growth in vitro, the TB10.4-specific CD8+ T cells neither recognized Mtb-infected macrophages nor restricted Mtb growth. TB10.4-specific CD8+ T cells recognized macrophages infected with Listeria monocytogenes expressing TB10.4. However, over-expression of TB10.4 in Mtb did not confer recognition by TB10.4-specific CD8+ T cells. CD8+ T cells recognized macrophages pulsed with irradiated Mtb, indicating that macrophages can efficiently cross-present the TB10.4 protein and raising the possibility that viable bacilli might suppress cross-presentation. Importantly, polyclonal CD8+ T cells specific for Mtb antigens other than TB10.4 recognized Mtb-infected macrophages in a MHC-restricted manner. As TB10.4 elicits a dominant CD8+ T cell response that poorly recognizes Mtb-infected macrophages, we propose that TB10.4 acts as a decoy antigen. Moreover, it appears that this response overshadows subdominant CD8+ T cell response that can recognize Mtb-infected macrophages. The ability of Mtb to subvert the CD8+ T cell response may explain why CD8+ T cells make a disproportionately small contribution to host defense compared to CD4+ T cells. The selection of Mtb antigens for vaccines has focused on antigens that generate immunodominant responses. We propose that establishing whether vaccine-elicited, Mtb-specific T cells recognize Mtb-infected macrophages could be a useful criterion for preclinical vaccine development.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Macrófagos Peritoneales/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis Pulmonar/inmunología , Animales , Antígenos Bacterianos/inmunología , Western Blotting , Línea Celular , Citometría de Flujo , Listeria/fisiología , Pulmón/citología , Pulmón/microbiología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/efectos de la radiación , Tioglicolatos/farmacología , Tuberculosis Pulmonar/microbiología
11.
PLoS Pathog ; 13(11): e1006704, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29176787

RESUMEN

Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Mycobacterium tuberculosis/fisiología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Proliferación Celular , Femenino , Humanos , Pulmón/inmunología , Pulmón/microbiología , Activación de Linfocitos , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Tuberculosis/microbiología , Tuberculosis/fisiopatología , Tuberculosis/prevención & control , Vacunas contra la Tuberculosis/administración & dosificación
12.
PLoS Pathog ; 12(1): e1005380, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26745507

RESUMEN

T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRß deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3ß sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Traslado Adoptivo , Animales , Separación Celular , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
13.
PLoS Pathog ; 12(3): e1005490, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26967901

RESUMEN

While T cell immunity initially limits Mycobacterium tuberculosis infection, why T cell immunity fails to sterilize the infection and allows recrudescence is not clear. One hypothesis is that T cell exhaustion impairs immunity and is detrimental to the outcome of M. tuberculosis infection. Here we provide functional evidence for the development T cell exhaustion during chronic TB. Second, we evaluate the role of the inhibitory receptor T cell immunoglobulin and mucin domain-containing-3 (TIM3) during chronic M. tuberculosis infection. We find that TIM3 expressing T cells accumulate during chronic infection, co-express other inhibitory receptors including PD1, produce less IL-2 and TNF but more IL-10, and are functionally exhausted. Finally, we show that TIM3 blockade restores T cell function and improves bacterial control, particularly in chronically infected susceptible mice. These data show that T cell immunity is suboptimal during chronic M. tuberculosis infection due to T cell exhaustion. Moreover, in chronically infected mice, treatment with anti-TIM3 mAb is an effective therapeutic strategy against tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Receptores Virales/metabolismo , Linfocitos T/inmunología , Tuberculosis/inmunología , Animales , Diferenciación Celular , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Inmunidad , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Ratones , Receptores Virales/genética
14.
J Immunol ; 196(4): 1822-31, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26755819

RESUMEN

The differentiation of effector CD8(+) T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. In this study, we define three signals regulating CD8(+) T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild-type and cytokine receptor knockout CD8(+) T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks postinfection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8(+) T cell expansion in the lungs. We next determined if these cytokines directly promote CD8(+) T cell priming or are required only for expansion in the lungs. Using retrogenic CD8(+) T cells specific for the M. tuberculosis Ag TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8(+) T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have nonredundant roles supporting pulmonary CD8(+) T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8(+) T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8(+) T cell regulation during tuberculosis.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citocinas/inmunología , Activación de Linfocitos/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
Semin Immunol ; 26(6): 559-77, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25311810

RESUMEN

Despite the introduction almost a century ago of Mycobacterium bovis BCG (BCG), an attenuated form of M. bovis that is used as a vaccine against Mycobacterium tuberculosis, tuberculosis remains a global health threat and kills more than 1.5 million people each year. This is mostly because BCG fails to prevent pulmonary disease--the contagious form of tuberculosis. Although there have been significant advances in understanding how the immune system responds to infection, the qualities that define protective immunity against M. tuberculosis remain poorly characterized. The ability to predict who will maintain control over the infection and who will succumb to clinical disease would revolutionize our approach to surveillance, control, and treatment. Here we review the current understanding of pulmonary T cell responses following M. tuberculosis infection. While infection elicits a strong immune response that contains infection, M. tuberculosis evades eradication. Traditionally, its intracellular lifestyle and alteration of macrophage function are viewed as the dominant mechanisms of evasion. Now we appreciate that chronic inflammation leads to T cell dysfunction. While this may arise as the host balances the goals of bacterial sterilization and avoidance of tissue damage, it is becoming clear that T cell dysfunction impairs host resistance. Defining the mechanisms that lead to T cell dysfunction is crucial as memory T cell responses are likely to be subject to the same subject to the same pressures. Thus, success of T cell based vaccines is predicated on memory T cells avoiding exhaustion while at the same time not promoting overt tissue damage.


Asunto(s)
Células Dendríticas/inmunología , Evasión Inmune , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Linfocitos T/inmunología , Tuberculosis Pulmonar/inmunología , Inmunidad Adaptativa , Presentación de Antígeno , Vacuna BCG/administración & dosificación , Vacuna BCG/inmunología , Citocinas/inmunología , Células Dendríticas/microbiología , Células Dendríticas/patología , Humanos , Inmunidad Innata , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/patología , Macrófagos/microbiología , Macrófagos/patología , Linfocitos T/microbiología , Linfocitos T/patología , Insuficiencia del Tratamiento , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología , Tuberculosis Pulmonar/prevención & control , Vacunación
16.
PLoS Pathog ; 11(5): e1004849, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25945999

RESUMEN

The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRß bias. Using a retro genic model of TB10.44-11-specific CD8+ Tcells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity.


Asunto(s)
Presentación de Antígeno/inmunología , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Epítopos de Linfocito T/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Interferón gamma/inmunología , Ratones Endogámicos C57BL
17.
PLoS Pathog ; 10(1): e1003805, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391492

RESUMEN

Invariant natural killer T (iNKT) cells are activated during infection, but how they limit microbial growth is unknown in most cases. We investigated how iNKT cells suppress intracellular Mycobacterium tuberculosis (Mtb) replication. When co-cultured with infected macrophages, iNKT cell activation, as measured by CD25 upregulation and IFNγ production, was primarily driven by IL-12 and IL-18. In contrast, iNKT cell control of Mtb growth was CD1d-dependent, and did not require IL-12, IL-18, or IFNγ. This demonstrated that conventional activation markers did not correlate with iNKT cell effector function during Mtb infection. iNKT cell control of Mtb replication was also independent of TNF and cell-mediated cytotoxicity. By dissociating cytokine-driven activation and CD1d-restricted effector function, we uncovered a novel mediator of iNKT cell antimicrobial activity: GM-CSF. iNKT cells produced GM-CSF in vitro and in vivo in a CD1d-dependent manner during Mtb infection, and GM-CSF was both necessary and sufficient to control Mtb growth. Here, we have identified GM-CSF production as a novel iNKT cell antimicrobial effector function and uncovered a potential role for GM-CSF in T cell immunity against Mtb.


Asunto(s)
Activación de Linfocitos , Macrófagos Peritoneales/inmunología , Mycobacterium tuberculosis/inmunología , Células T Asesinas Naturales/inmunología , Tuberculosis/inmunología , Animales , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-12/genética , Interleucina-12/inmunología , Interleucina-18/genética , Interleucina-18/inmunología , Macrófagos Peritoneales/microbiología , Macrófagos Peritoneales/patología , Ratones , Ratones Noqueados , Células T Asesinas Naturales/patología , Tuberculosis/genética , Tuberculosis/patología
18.
Trends Immunol ; 34(10): 502-10, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23871487

RESUMEN

The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.


Asunto(s)
Tolerancia Inmunológica/inmunología , Infecciones/inmunología , Timo/citología , Timo/inmunología , Animales , Diferenciación Celular/inmunología , Humanos , Linfocitos T/citología , Linfocitos T/inmunología
19.
J Immunol ; 193(9): 4457-68, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25246495

RESUMEN

Diabetes is linked to increased inflammation and susceptibility to certain infectious diseases including tuberculosis (TB). We previously reported that aerosol TB in mice with chronic (≥ 12 wk) hyperglycemia features increased bacterial load, overproduction of several cytokines, and increased immune pathology compared with normoglycemic controls. A similar phenotype exists in human patients with diabetes with TB. The mechanisms of increased T cell activation in diabetes are unknown. In the current study, we tested the hypothesis that hyperglycemia modifies the intrinsic responsiveness of naive T cells to TCR stimulation. Purified T cells from chronically hyperglycemic (HG) mice produced higher levels of Th1, Th2, and Th17 cytokines and proliferated more than T cells from normoglycemic controls after anti-CD3e or Ag stimulation. In this way, naive T cells from HG mice resembled Ag-experienced cells, although CD44 expression was not increased. Chromatin decondensation, another characteristic of Ag-experienced T cells, was increased in naive T cells from HG mice. That phenotype depended on expression of the receptor for advanced glycation end products and could be reversed by inhibiting p38 MAPK. Chromatin decondensation and hyperresponsiveness to TCR stimulation persisted following transfer of T cells from HG mice into normoglycemic mice. We propose that chronic hyperglycemia causes receptor for advanced glycation end products-mediated epigenetic modification of naive T cells leading to p38 MAPK-dependent chromatin decondensation. This preactivation state facilitates transcription factor access to DNA, increasing cytokine production and proliferation following TCR stimulation. This mechanism may contribute to pathological inflammation associated with diabetes and might offer a novel therapeutic target.


Asunto(s)
Cromatina/genética , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Hiperglucemia/genética , Hiperglucemia/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Cromatina/metabolismo , Citocinas/biosíntesis , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Inmunofenotipificación , Activación de Linfocitos/inmunología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Fenotipo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Timo/inmunología , Timo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA