Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 44(6): 1446-1459, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30291536

RESUMEN

Mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene have been implicated in the pathogenesis of Parkinson's disease (PD). Identification of PD-associated LRRK2 mutations has led to the development of novel animal models, primarily in mice. However, the characteristics of human LRRK2 and mouse Lrrk2 protein have not previously been directly compared. Here we show that proteins from different species have different biochemical properties, with the mouse protein being more stable but having significantly lower kinase activity compared to the human orthologue. In examining the effects of PD-associated mutations and risk factors on protein function, we found that conserved substitutions such as G2019S affect human and mouse LRRK2 proteins similarly, but variation around position 2385, which is not fully conserved between humans and mice, induces divergent in vitro behavior. Overall our results indicate that structural differences between human and mouse LRRK2 are likely responsible for the different properties we have observed for these two species of LRRK2 protein. These results have implications for disease modelling of LRRK2 mutations in mice and on the testing of pharmacological therapies in animals.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Animales , Técnicas de Sustitución del Gen , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Mutación , Fosforilación/fisiología , Estabilidad Proteica , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/metabolismo
2.
Biochem J ; 474(9): 1547-1558, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28320779

RESUMEN

Autosomal dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease (PD). Most pathogenic LRRK2 mutations result in amino acid substitutions in the central ROC (Ras of complex proteins)-C-terminus of ROC-kinase triple domain and affect enzymatic functions of the protein. However, there are several variants in LRRK2, including the risk factor G2385R, that affect PD pathogenesis by unknown mechanisms. Previously, we have shown that G2385R LRRK2 has decreased kinase activity in vitro and altered affinity to LRRK2 interactors. Specifically, we found an increased binding to the chaperone Hsp90 (heat shock protein 90 kDa) that is known to stabilize LRRK2, suggesting that G2385R may have structural effects on LRRK2. In the present study, we further explored the effects of G2385R on LRRK2 in cells. We found that G2385R LRRK2 has lower steady-state intracellular protein levels compared with wild-type LRRK2 due to increased protein turnover of the mutant protein. Mechanistically, this is a consequence of a higher affinity of G2385R compared with the wild-type protein for two proteins involved in proteasomal degradation, Hsc70 and carboxyl-terminus of Hsc70-interacting protein (CHIP). Overexpression of CHIP decreased intracellular protein levels of both G2385R mutant and wild-type LRRK2, while short interfering RNA CHIP knockdown had the opposite effect. We suggest that the G2385R substitution tilts the equilibrium between refolding and proteasomal degradation toward intracellular degradation. The observation of lower steady-state protein levels may explain why G2385R is a risk factor rather than a penetrant variant for inherited PD.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Riesgo , Ubiquitina-Proteína Ligasas/genética
3.
Stem Cell Res ; 69: 103125, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229975

RESUMEN

Pathogenic variants in the alpha-synuclein (SNCA) gene cause familial forms of Parkinson's disease (PD). Here, we describe generation of six isogenic controls from iPS cell lines derived from two PD disease patients carrying the SNCAp.A53T variant. The controls were created using CRISPR/Cas9 technology and are available for use by the PD research community to study A53T-related synucleinopathies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Células Madre Pluripotentes Inducidas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Regulación de la Expresión Génica , Expresión Génica
4.
NPJ Parkinsons Dis ; 4: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29707617

RESUMEN

Parkinson's disease-linked mutations in LRRK2 enhance the kinase activity of the protein, therefore targeting LRRK2 kinase activity is a promising therapeutic approach. Phosphorylation at S935 of LRRK2 and of its Rab GTPase substrates have proven very useful biomarkers to monitor its kinase activity. Complementary to these approaches autophosphorylation of LRRK2 can be used as a direct kinase activity readout but to date detection of autophosphorylation at endogenous levels in vivo has been limited. We developed a fractionation-based enrichment method to successfully detect endogenous S1292 LRRK2 autophosphorylation in mouse tissues and highlight S1292 as a physiological readout candidate for LRRK2 kinase activity in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA