Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol Inform ; 15: 100357, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38420608

RESUMEN

Computational Pathology (CPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology, facilitating transformational changes in the diagnosis and treatment of cancer that are mainly address by CPath tools. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CPath. In this article we provide a comprehensive review of more than 800 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CPath. For updated information on this survey review paper and accessing to the original model cards repository, please refer to GitHub. Updated version of this draft can also be found from arXiv.

3.
Med Image Anal ; 54: 111-121, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30861443

RESUMEN

Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of κ = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r = 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias de la Mama/patología , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Proliferación Celular , Femenino , Expresión Génica , Humanos , Mitosis , Patología/métodos , Valor Predictivo de las Pruebas , Pronóstico
4.
Proc IEEE Int Symp Biomed Imaging ; 2017: 929-932, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31636811

RESUMEN

Diagnosis of breast carcinomas has so far been limited to the morphological interpretation of epithelial cells and the assessment of epithelial tissue architecture. Consequently, most of the automated systems have focused on characterizing the epithelial regions of the breast to detect cancer. In this paper, we propose a system for classification of hematoxylin and eosin (H&E) stained breast specimens based on convolutional neural networks that primarily targets the assessment of tumor-associated stroma to diagnose breast cancer patients. We evaluate the performance of our proposed system using a large cohort containing 646 breast tissue biopsies. Our evaluations show that the proposed system achieves an area under ROC of 0.92, demonstrating the discriminative power of previously neglected tumor associated stroma as a diagnostic biomarker.

5.
J Med Imaging (Bellingham) ; 4(4): 044504, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29285517

RESUMEN

Currently, histopathological tissue examination by a pathologist represents the gold standard for breast lesion diagnostics. Automated classification of histopathological whole-slide images (WSIs) is challenging owing to the wide range of appearances of benign lesions and the visual similarity of ductal carcinoma in-situ (DCIS) to invasive lesions at the cellular level. Consequently, analysis of tissue at high resolutions with a large contextual area is necessary. We present context-aware stacked convolutional neural networks (CNN) for classification of breast WSIs into normal/benign, DCIS, and invasive ductal carcinoma (IDC). We first train a CNN using high pixel resolution to capture cellular level information. The feature responses generated by this model are then fed as input to a second CNN, stacked on top of the first. Training of this stacked architecture with large input patches enables learning of fine-grained (cellular) details and global tissue structures. Our system is trained and evaluated on a dataset containing 221 WSIs of hematoxylin and eosin stained breast tissue specimens. The system achieves an AUC of 0.962 for the binary classification of nonmalignant and malignant slides and obtains a three-class accuracy of 81.3% for classification of WSIs into normal/benign, DCIS, and IDC, demonstrating its potential for routine diagnostics.

6.
Med Image Anal ; 42: 60-88, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28778026

RESUMEN

Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.


Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Humanos
7.
IEEE Trans Med Imaging ; 35(2): 404-15, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26353368

RESUMEN

Variations in the color and intensity of hematoxylin and eosin (H&E) stained histological slides can potentially hamper the effectiveness of quantitative image analysis. This paper presents a fully automated algorithm for standardization of whole-slide histopathological images to reduce the effect of these variations. The proposed algorithm, called whole-slide image color standardizer (WSICS), utilizes color and spatial information to classify the image pixels into different stain components. The chromatic and density distributions for each of the stain components in the hue-saturation-density color model are aligned to match the corresponding distributions from a template whole-slide image (WSI). The performance of the WSICS algorithm was evaluated on two datasets. The first originated from 125 H&E stained WSIs of lymph nodes, sampled from 3 patients, and stained in 5 different laboratories on different days of the week. The second comprised 30 H&E stained WSIs of rat liver sections. The result of qualitative and quantitative evaluations using the first dataset demonstrate that the WSICS algorithm outperforms competing methods in terms of achieving color constancy. The WSICS algorithm consistently yields the smallest standard deviation and coefficient of variation of the normalized median intensity measure. Using the second dataset, we evaluated the impact of our algorithm on the performance of an already published necrosis quantification system. The performance of this system was significantly improved by utilizing the WSICS algorithm. The results of the empirical evaluations collectively demonstrate the potential contribution of the proposed standardization algorithm to improved diagnostic accuracy and consistency in computer-aided diagnosis for histopathology data.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Coloración y Etiquetado/métodos , Humanos , Ganglios Linfáticos/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA