Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
New Phytol ; 242(2): 392-423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409806

RESUMEN

A minuscule fraction of the Earth's paleobiological diversity is preserved in the geological record as fossils. What plant remnants have withstood taphonomic filtering, fragmentation, and alteration in their journey to become part of the fossil record provide unique information on how plants functioned in paleo-ecosystems through their traits. Plant traits are measurable morphological, anatomical, physiological, biochemical, or phenological characteristics that potentially affect their environment and fitness. Here, we review the rich literature of paleobotany, through the lens of contemporary trait-based ecology, to evaluate which well-established extant plant traits hold the greatest promise for application to fossils. In particular, we focus on fossil plant functional traits, those measurable properties of leaf, stem, reproductive, or whole plant fossils that offer insights into the functioning of the plant when alive. The limitations of a trait-based approach in paleobotany are considerable. However, in our critical assessment of over 30 extant traits we present an initial, semi-quantitative ranking of 26 paleo-functional traits based on taphonomic and methodological criteria on the potential of those traits to impact Earth system processes, and for that impact to be quantifiable. We demonstrate how valuable inferences on paleo-ecosystem processes (pollination biology, herbivory), past nutrient cycles, paleobiogeography, paleo-demography (life history), and Earth system history can be derived through the application of paleo-functional traits to fossil plants.


Asunto(s)
Ecosistema , Fósiles , Ecología , Plantas , Fenotipo
2.
New Phytol ; 235(4): 1442-1454, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35672945

RESUMEN

The Triassic-Jurassic boundary marks the third largest mass extinction event in the Phanerozoic, characterized by a rise in CO2 -concentrations from c. 600 ppm to c. 2100-2400 ppm, coupled with a c. 3.0-4.0°C temperature rise. This is hypothesized to have induced major floral turnover, altering vegetation structure, composition and leaf morphology, which in turn are hypothesized to have driven changes in wildfire. However, the effects of elevated CO2 on fuel properties, such as chemical composition of leaves, are also important in influencing fire behaviour, but yet have not been considered. We test this by selecting three Triassic analogue species grown experimentally in different atmospheric compositions, and analyse variations in leaf chemistry, and leaf level flammability. These data were used to inform a fire behaviour model. We find that all three species tested showed a reduction in their volatile component, leading to lower flammability. Accounting for these variations in a model, our results suggest that leaf intrinsic flammability has a measurable impact on modelled fire behaviour. If scaled up to ecosystem level, periods of elevated CO2 may therefore be capable of inducing both biochemical and morphological changes in fuel properties, and thus may be capable of influencing fire behaviour.


Asunto(s)
Ecosistema , Incendios , Dióxido de Carbono , Extinción Biológica , Hojas de la Planta/química
3.
New Phytol ; 213(3): 1521-1532, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28079941

RESUMEN

Angiosperms evolved and diversified during the Cretaceous period. Early angiosperms were short-stature weedy plants thought to have increased fire frequency and mortality in gymnosperm forest, aiding their own expansion. However, no explorations have considered whether the range of novel fuel types that diversified throughout the Cretaceous also altered fire behaviour, which should link more strongly to mortality than fire frequency alone. We measured ignitability and heat of combustion in analogue Cretaceous understorey fuels (conifer litter, ferns, weedy and shrubby angiosperms) and used these data to model palaeofire behaviour. Variations in ignition, driven by weedy angiosperms alone, were found to have been a less important feedback to changes in Cretaceous fire activity than previously estimated. Our model estimates suggest that fires in shrub and fern understories had significantly greater fireline intensities than those fuelled by conifer litter or weedy angiosperms, and whilst fern understories supported the most rapid fire spread, angiosperm shrubs delivered the largest amount of heat per unit area. The higher fireline intensities predicted by the models led to estimates of enhanced scorch of the gymnosperm canopy and a greater chance of transitioning to crown fires. Therefore, changes in fire behaviour driven by the addition of new Cretaceous fuel groups may have assisted the angiosperm expansion.


Asunto(s)
Incendios , Magnoliopsida/fisiología , Combustibles Fósiles , Humedad , Modelos Teóricos , Oxígeno/análisis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Factores de Tiempo , Viento
4.
Nat Commun ; 15(1): 7363, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191729

RESUMEN

Loss of peat through increased burning will have major impacts on the global carbon cycle. In a normal hydrological state, the risk of fire propagation is largely controlled by peat bulk density and moisture content. However, where humans have interfered with the moisture status of peat either via drainage, or indirectly via climate change, we hypothesise that its botanical composition will become important to flammability, such that peats from different latitudes might have different compositionally-driven susceptibility to ignition. We use pyrolysis combustion flow calorimetry to determine the temperature of maximum thermal decomposition (Tmax) of peats from different latitudes, and couple this to a botanical composition analysis. We find that tropical peat has higher Tmax than other regions, likely on account of its higher wood content which appears to convey a greater resistance to ignition. This resistance also increases with depth, which means that loss of surface peat in tropical regions may lead to a reduction in the subsequent ignitability of deeper peat layers as they are exposed, potentially resulting in a negative feedback on increased fire occurrence and severity.

5.
Proc Natl Acad Sci U S A ; 107(52): 22448-53, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149686

RESUMEN

Atmospheric oxygen (O(2)) is estimated to have varied greatly throughout Earth's history and has been capable of influencing wildfire activity wherever fuel and ignition sources were present. Fires consume huge quantities of biomass in all ecosystems and play an important role in biogeochemical cycles. This means that understanding the influence of O(2) on past fire activity has far-reaching consequences for the evolution of life and Earth's biodiversity over geological timescales. We have used a strong electrical ignition source to ignite smoldering fires, and we measured their self-sustaining propagation in atmospheres of different oxygen concentrations. These data have been used to build a model that we use to estimate the baseline intrinsic flammability of Earth's ecosystems according to variations in O(2) over the past 350 million years (Ma). Our aim is to highlight times in Earth's history when fire has been capable of influencing the Earth system. We reveal that fire activity would be greatly suppressed below 18.5% O(2), entirely switched off below 16% O(2), and rapidly enhanced between 19-22% O(2). We show that fire activity and, therefore, its influence on the Earth system would have been high during the Carboniferous (350-300 Ma) and Cretaceous (145-65 Ma) periods; intermediate in the Permian (299-251 Ma), Late Triassic (285-201 Ma), and Jurassic (201-145 Ma) periods; and surprisingly low to lacking in the Early-Middle Triassic period between 250-240 Ma. These baseline variations in Earth's flammability must be factored into our understanding of past vegetation, biodiversity, evolution, and biogeochemical cycles.


Asunto(s)
Planeta Tierra , Ecosistema , Incendios , Oxígeno/metabolismo , Aire/análisis , Atmósfera , Evolución Biológica , Temperatura , Factores de Tiempo
6.
New Phytol ; 194(3): 751-759, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22348443

RESUMEN

• The mapping of functional traits onto chronograms is an emerging approach for the identification of how agents of natural selection have shaped the evolution of organisms. Recent research has reported fire-dependent traits appearing among flowering plants from 60 million yr ago (Ma). Although there are many records of fossil charcoal in the Cretaceous (65-145 Ma), evidence of fire-dependent traits evolving in that period is lacking. • We link the evolutionary trajectories for five fire-adapted traits in Pinaceae with paleoatmospheric conditions over the last 250 million yr to determine the time at which fire originated as a selective force in trait evolution among seed plants. • Fire-protective thick bark originated in Pinus c. 126 Ma in association with low-intensity surface fires. More intense crown fires emerged c. 89 Ma coincident with thicker bark and branch shedding, or serotiny with branch retention as an alternative strategy. These innovations appeared at the same time as the Earth's paleoatmosphere experienced elevated oxygen levels that led to high burn probabilities during the mid-Cretaceous. • The fiery environments of the Cretaceous strongly influenced trait evolution in Pinus. Our evidence for a strong correlation between the evolution of fire-response strategies and changes in fire regime 90-125 Ma greatly backdates the key role that fire has played in the evolution of seed plants.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Incendios , Magnoliopsida/genética , Pinus/genética , Selección Genética , Ambiente , Fósiles , Magnoliopsida/fisiología , Oxígeno , Fenotipo , Filogenia , Pinus/fisiología , Corteza de la Planta/genética , Corteza de la Planta/fisiología , Semillas , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 106(11): 4112-7, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19251660

RESUMEN

It has been proposed that extensive wildfires occurred after the Cretaceous-Tertiary (K-T) impact event. An abundance of soot and pyrosynthetic polycyclic aromatic hydrocarbons (pPAHs) in marine K-T boundary impact rocks (BIRs) have been considered support for this hypothesis. However, nonmarine K-T BIRs, from across North America, contain only rare occurrences of charcoal yet abundant noncharred plant remains. pPAHs and soot can be formed from a variety of sources, including partial combustion of vegetation and hydrocarbons whereby modern pPAH signatures are traceable to their source. We present results from multiple nonmarine K-T boundary sites from North America and reveal that the K-T BIRs have a pPAH signature consistent with the combustion of hydrocarbons and not living plant biomass, providing further evidence against K-T wildfires and compelling evidence that a significant volume of hydrocarbons was combusted during the K-T impact event.


Asunto(s)
Desastres/historia , Hidrocarburos/química , Hidrocarburos Policíclicos Aromáticos/química , Fenómenos Geológicos , Historia Antigua , Meteoroides , América del Norte , Hollín
8.
Nat Commun ; 13(1): 7285, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435885

RESUMEN

Throughout Earth's history, the abundance of oxygen in our atmosphere has varied, but by how much remains debated. Previously, an upper limit for atmospheric oxygen has been bounded by assumptions made regarding the fire window: atmospheric oxygen concentrations higher than 30-40% would threaten the regeneration of forests in the present world. Here we have tested these assumptions by adapting a Dynamic Global Vegetation Model to run over high atmospheric oxygen concentrations. Our results show that whilst global tree cover is significantly reduced under high O2 concentrations, forests persist in the wettest parts of the low and high latitudes and fire is more dependent on fuel moisture than O2 levels. This implies that the effect of fire on suppressing global vegetation under high O2 may be lower than previously assumed and questions our understanding of the mechanisms involved in regulating the abundance of oxygen in our atmosphere, with moisture as a potentially important factor.


Asunto(s)
Incendios , Bosques , Árboles , Atmósfera , Oxígeno
9.
Nat Commun ; 12(1): 503, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479227

RESUMEN

The source of oxygen to Earth's atmosphere is organic carbon burial, whilst the main sink is oxidative weathering of fossil carbon. However, this sink is to insensitive to counteract oxygen rising above its current level of about 21%. Biogeochemical models suggest that wildfires provide an additional regulatory feedback mechanism. However, none have considered how the evolution of different plant groups through time have interacted with this feedback. The Cretaceous Period saw not only super-ambient levels of atmospheric oxygen but also the evolution of the angiosperms, that then rose to dominate Earth's ecosystems. Here we show, using the COPSE biogeochemical model, that angiosperm-driven alteration of fire feedbacks likely lowered atmospheric oxygen levels from ~30% to 25% by the end of the Cretaceous. This likely set the stage for the emergence of closed-canopy angiosperm tropical rainforests that we suggest would not have been possible without angiosperm enhancement of fire feedbacks.


Asunto(s)
Atmósfera/química , Retroalimentación Fisiológica , Incendios , Magnoliopsida/metabolismo , Oxígeno/metabolismo , Algoritmos , Carbono/metabolismo , Ecosistema , Fósiles , Magnoliopsida/crecimiento & desarrollo , Modelos Teóricos , Factores de Tiempo
10.
Sci Rep ; 8(1): 6206, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670149

RESUMEN

Global warming events have coincided with turnover of plant species at intervals in Earth history. As mean global temperatures rise, the number, frequency and duration of heat-waves will increase. Ginkgo biloba was grown under controlled climatic conditions at two different day/night temperature regimes (25/20 °C and 35/30 °C) to investigate the impact of heat stress. Photosynthetic CO2-uptake and electron transport were reduced at the higher temperature, while rates of respiration were greater; suggesting that the carbon balance of the leaves was adversely affected. Stomatal conductance and the potential for evaporative cooling of the leaves was reduced at the higher temperature. Furthermore, the capacity of the leaves to dissipate excess energy was also reduced at 35/30 °C, indicating that photo-protective mechanisms were no longer functioning effectively. Leaf economics were adversely affected by heat stress, exhibiting an increase in leaf mass per area and leaf construction costs. This may be consistent with the selective pressures experienced by fossil Ginkgoales during intervals of global warming such as the Triassic - Jurassic boundary or Early Eocene Climatic Optimum. The physiological and morphological responses of the G. biloba leaves were closely interrelated; these relationships may be used to infer the leaf economics and photosynthetic/stress physiology of fossil plants.

11.
Sci Rep ; 8(1): 8661, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29849111

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

12.
Nat Commun ; 8: 15018, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28497785

RESUMEN

The Toarcian Oceanic Anoxic Event (T-OAE) was characterized by a major disturbance to the global carbon(C)-cycle, and depleted oxygen in Earth's oceans resulting in marine mass extinction. Numerical models predict that increased organic carbon burial should drive a rise in atmospheric oxygen (pO2) leading to termination of an OAE after ∼1 Myr. Wildfire is highly responsive to changes in pO2 implying that fire-activity should vary across OAEs. Here we test this hypothesis by tracing variations in the abundance of fossil charcoal across the T-OAE. We report a sustained ∼800 kyr enhancement of fire-activity beginning ∼1 Myr after the onset of the T-OAE and peaking during its termination. This major enhancement of fire occurred across the timescale of predicted pO2 variations, and we argue this was primarily driven by increased pO2. Our study provides the first fossil-based evidence suggesting that fire-feedbacks to rising pO2 may have aided in terminating the T-OAE.


Asunto(s)
Atmósfera/química , Carbono/análisis , Carbón Orgánico/química , Oxígeno/análisis , Animales , Organismos Acuáticos/fisiología , Carbono/metabolismo , Planeta Tierra , Ecosistema , Extinción Biológica , Incendios , Fósiles , Océanos y Mares , Oxígeno/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-27216520

RESUMEN

Studies of palaeofire rely on quantifying the abundance of fossil charcoals in sediments to estimate changes in fire activity. However, gaining an understanding of the behaviour of palaeofires is also essential if we are to determine the palaeoecological impact of wildfires. Here, I use experimental approaches to explore relationships between litter fire behaviour and leaf traits that are observable in the fossil record. Fire calorimetry was used to assess the flammability of 15 species of conifer litter and indicated that leaf morphology related to litter bulk density and fuel load that determined the duration of burning and the total energy released. These data were applied to a fossil case study that couples estimates of palaeolitter fire behaviour to charcoal-based estimates of fire activity and observations of palaeoecological changes. The case study reveals that significant changes in fire activity and behaviour likely fed back to determine ecosystem composition. This work highlights that we can recognize and measure plant traits in the fossil record that relate to fire behaviour and therefore that further research is warranted towards estimating palaeofire behaviour as it can enhance our ability to interpret the palaeoecological impact of palaeofires throughout Earth's long evolutionary history.This article is part of the themed issue 'The interaction of fire and mankind'.


Asunto(s)
Incendios , Fósiles/anatomía & histología , Hojas de la Planta/anatomía & histología , Tracheophyta/anatomía & histología , Evolución Biológica , Ecosistema , Paleontología
14.
Artículo en Inglés | MEDLINE | ID: mdl-27216519

RESUMEN

Fire has been an important part of the Earth system for over 350 Myr. Humans evolved in this fiery world and are the only animals to have used and controlled fire. The interaction of mankind with fire is a complex one, with both positive and negative aspects. Humans have long used fire for heating, cooking, landscape management and agriculture, as well as for pyrotechnologies and in industrial processes over more recent centuries. Many landscapes need fire but population expansion into wildland areas creates a tension between different interest groups. Extinguishing wildfires may not always be the correct solution. A combination of factors, including the problem of invasive plants, landscape change, climate change, population growth, human health, economic, social and cultural attitudes that may be transnational make a re-evaluation of fire and mankind necessary. The Royal Society meeting on Fire and mankind was held to address these issues and the results of these deliberations are published in this volume.This article is part of the themed issue 'The interaction of fire and mankind'.


Asunto(s)
Actitud , Cambio Climático , Conservación de los Recursos Naturales/métodos , Salud Ambiental , Incendios , Crecimiento Demográfico , Humanos , Especies Introducidas
15.
Sci Total Environ ; 572: 1422-1430, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27000715

RESUMEN

The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies.

16.
J Ecol ; 104(1): 138-148, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26877549

RESUMEN

Tropical grasses fuel the majority of fires on Earth. In fire-prone landscapes, enhanced flammability may be adaptive for grasses via the maintenance of an open canopy and an increase in spatiotemporal opportunities for recruitment and regeneration. In addition, by burning intensely but briefly, high flammability may protect resprouting buds from lethal temperatures. Despite these potential benefits of high flammability to fire-prone grasses, variation in flammability among grass species, and how trait differences underpin this variation, remains unknown.By burning leaves and plant parts, we experimentally determined how five plant traits (biomass quantity, biomass density, biomass moisture content, leaf surface-area-to-volume ratio and leaf effective heat of combustion) combined to determine the three components of flammability (ignitability, sustainability and combustibility) at the leaf and plant scales in 25 grass species of fire-prone South African grasslands at a time of peak fire occurrence. The influence of evolutionary history on flammability was assessed based on a phylogeny built here for the study species.Grass species differed significantly in all components of flammability. Accounting for evolutionary history helped to explain patterns in leaf-scale combustibility and sustainability. The five measured plant traits predicted components of flammability, particularly leaf ignitability and plant combustibility in which 70% and 58% of variation, respectively, could be explained by a combination of the traits. Total above-ground biomass was a key driver of combustibility and sustainability with high biomass species burning more intensely and for longer, and producing the highest predicted fire spread rates. Moisture content was the main influence on ignitability, where species with higher moisture contents took longer to ignite and once alight burnt at a slower rate. Biomass density, leaf surface-area-to-volume ratio and leaf effective heat of combustion were weaker predictors of flammability components. Synthesis. We demonstrate that grass flammability is predicted from easily measurable plant functional traits and is influenced by evolutionary history with some components showing phylogenetic signal. Grasses are not homogenous fuels to fire. Rather, species differ in functional traits that in turn demonstrably influence flammability. This diversity is consistent with the idea that flammability may be an adaptive trait for grasses of fire-prone ecosystems.

17.
Artículo en Inglés | MEDLINE | ID: mdl-27216517

RESUMEN

Living with fire is a challenge for human communities because they are influenced by socio-economic, political, ecological and climatic processes at various spatial and temporal scales. Over the course of 2 days, the authors discussed how communities could live with fire challenges at local, national and transnational scales. Exploiting our diverse, international and interdisciplinary expertise, we outline generalizable properties of fire-adaptive communities in varied settings where cultural knowledge of fire is rich and diverse. At the national scale, we discussed policy and management challenges for countries that have diminishing fire knowledge, but for whom global climate change will bring new fire problems. Finally, we assessed major fire challenges that transcend national political boundaries, including the health burden of smoke plumes and the climate consequences of wildfires. It is clear that to best address the broad range of fire problems, a holistic wildfire scholarship must develop common agreement in working terms and build across disciplines. We must also communicate our understanding of fire and its importance to the media, politicians and the general public.This article is part of the themed issue 'The interaction of fire and mankind'.


Asunto(s)
Actitud , Cambio Climático , Conservación de los Recursos Naturales , Incendios , Salud Ambiental , Humanos , Crecimiento Demográfico
19.
PLoS One ; 10(4): e0120835, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25853712

RESUMEN

Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180µm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.


Asunto(s)
Carbón Orgánico/química , Incendios , Fenómenos Geológicos , Taiga , Modelos Estadísticos
20.
Appl Plant Sci ; 2(8)2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25202644

RESUMEN

PREMISE OF THE STUDY: Charcoal particles preserved in sediments are used as indicators of paleowildfire. Most research focuses on abundance as an indicator of fire frequency, but charcoals also convey information about the vegetation from which they are derived. One potential source of information is their morphology, which is influenced by the parent material, the nature of the fire, and subsequent transportation and burial. • METHODS: We charcoalified 26 materials from a range of plant taxa, and subjected them to simulated fluvial transport by tumbling them with water and gravel. We photographed the resulting particles, and used image analysis software to measure morphological parameters. • RESULTS: Leaf charcoal displayed a logarithmic decrease in area, and a logarithmic increase in circularity, with transportation time. Trends were less clear for stem or wood charcoal. Grass charcoal displayed significantly higher aspect ratios than other charcoal types. • CONCLUSIONS: Leaf charcoal displays more easily definable relationships between morphological parameters and degree of breakdown than stem or wood charcoal. The aspect ratios of fossil mesocharcoal can indicate the broad botanical source of an assemblage. Coupled to estimates of charcoal abundance, this will improve understanding of the variation in flammability of ancient ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA