Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(34): 16909-16914, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31383758

RESUMEN

Multiple lines of evidence suggest that plant water-use efficiency (WUE)-the ratio of carbon assimilation to water loss-has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem-scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance.


Asunto(s)
Carbono/metabolismo , Bosques , Modelos Biológicos , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Agua/metabolismo , Dióxido de Carbono/metabolismo , Estados Unidos
2.
New Phytol ; 229(5): 2413-2445, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32789857

RESUMEN

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Asunto(s)
Secuestro de Carbono , Ecosistema , Atmósfera , Ciclo del Carbono , Dióxido de Carbono , Cambio Climático
3.
Glob Chang Biol ; 27(8): 1560-1571, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33464665

RESUMEN

Increasing water-use efficiency (WUE), the ratio of carbon gain to water loss, is a key mechanism that enhances carbon uptake by terrestrial vegetation under rising atmospheric CO2 (ca ). Existing theory and empirical evidence suggest a proportional WUE increase in response to rising ca as plants maintain a relatively constant ratio between the leaf intercellular (ci ) and ambient (ca ) partial CO2 pressure (ci /ca ). This has been hypothesized as the main driver of the strengthening of the terrestrial carbon sink over the recent decades. However, proportionality may not characterize CO2 effects on WUE on longer time-scales and the role of climate in modulating these effects is uncertain. Here, we evaluate long-term WUE responses to ca and climate from 1901 to 2012 CE by reconstructing intrinsic WUE (iWUE, the ratio of photosynthesis to stomatal conductance) using carbon isotopes in tree rings across temperate forests in the northeastern USA. We show that iWUE increased steadily from 1901 to 1975 CE but remained constant thereafter despite continuously rising ca . This finding is consistent with a passive physiological response to ca and coincides with a shift to significantly wetter conditions across the region. Tree physiology was driven by summer moisture at multi-decadal time-scales and did not maintain a constant ci /ca in response to rising ca indicating that a point was reached where rising CO2 had a diminishing effect on tree iWUE. Our results challenge the mechanism, magnitude, and persistence of CO2 's effect on iWUE with significant implications for projections of terrestrial productivity under a changing climate.


Asunto(s)
Dióxido de Carbono , Agua , Secuestro de Carbono , Clima , Bosques
4.
Oecologia ; 197(4): 1095-1110, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33743068

RESUMEN

Both increases in temperature and changes in precipitation may limit future tree growth, but rising atmospheric CO2 could offset some of these stressors through increased plant Water Use Efficiency (WUE). The net balance between the negative impacts of climate change and positive effects of CO2 on tree growth is crucial for ecotones, where increased climate stress could drive mortality and shifts in range. Here, we quantify the effects of climate, stand structure, and rising CO2 on both annual tree-ring growth increment and intrinsic WUE (iWUE) at a savanna-forest boundary in the Upper Midwest United States. Taking a Bayesian hierarchical modelling approach, we find that plant iWUE increased by ~ 16-23% over the course of the twentieth century, but on average, tree-ring growth increments do not significantly increase. Consistent with higher iWUE under increased CO2 and recent wetting, we observe a decrease in sensitivity of tree growth to annual precipitation, leading to ~ 35-41% higher growth under dry conditions compared to trees of similar size in the past. However, an emerging interaction between summer maximum temperatures and annual precipitation diminishes the water-savings benefit under hot and dry conditions. This decrease in precipitation sensitivity, and the interaction between temperature and precipitation are strongest in open canopy microclimates, suggesting that stand structure may modulate response to future changes. Overall, while higher iWUE may provide some water savings benefits to growth under normal drought conditions, near-term future temperature increases combined with drought events could drive growth declines of about 50%.


Asunto(s)
Dióxido de Carbono , Agua , Teorema de Bayes , Cambio Climático , Bosques , Temperatura
5.
Oecologia ; 197(4): 1079-1094, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33870457

RESUMEN

Recent evidence has revealed the emergence of a megadrought in southwestern North America since 2000. Megadroughts extend for at least 2 decades, making it challenging to identify such events until they are well established. Here, we examined tree-ring growth and stable isotope ratios in Pinus ponderosa at its driest niche edge to investigate whether trees growing near their aridity limit were sensitive to the megadrought climatic pre-conditions, and were capable of informing predictive efforts. During the decade before the megadrought, trees in four populations revealed increases in the cellulose δ13C content of earlywood, latewood, and false latewood, which, based on past studies are correlated with increased intrinsic water-use efficiency. However, radial growth and cellulose δ18O were not sensitive to pre-megadrought conditions. During the 2 decades preceding the megadrought, at all four sites, the changes in δ13C were caused by the high sensitivity of needle carbon and water exchange to drought trends in key winter months, and for three of the four sites during crucial summer months. Such pre-megadrought physiological sensitivity appears to be unique for trees near their arid range limit, as similar patterns were not observed in trees in ten reference sites located along a latitudinal gradient in the same megadrought domain, despite similar drying trends. Our results reveal the utility of tree-ring δ13C to reconstruct spatiotemporal patterns during the organizational phase of a megadrought, demonstrating that trees near the arid boundaries of a species' distribution might be useful in the early detection of long-lasting droughts.


Asunto(s)
Sequías , Agua , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Estaciones del Año
6.
New Phytol ; 228(6): 1781-1795, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33439504

RESUMEN

Rising atmospheric CO2 (ca) is expected to promote tree growth and lower water loss via changes in leaf gas exchange. However, uncertainties remain if gas-exchange regulation strategies are homeostatic or dynamical in response to increasing ca, as well as evolving climate and pollution inputs. Using a suite of tree ring-based δ13C-derived physiological parameters (Δ13C, ci, iWUE) and tree growth from a mesic, low elevation stand of canopy-dominant Tsuga canadensis in north-eastern USA, we investigated the influence of rising ca, climate and pollution on, and characterised the dynamical regulation strategy of, leaf gas exchange at multidecadal scales. Isotopic and growth time series revealed an evolving physiological response in which the species shifted its leaf gas-exchange strategy dynamically (constant ci; constant ci/ca; constant ca - ci) in response to rising ca, moisture availability and site conditions over 111 yr. Tree iWUE plateaued after 1975, driven by greater moisture availability and a changing soil biogeochemistry that may have impaired a stomatal response. Results suggested that trees may exhibit more complex physiological responses to the changing environmental conditions over multidecadal periods, and complicating the parameterisation of Earth system models and the estimation of future carbon sink capacity and water balance in midlatitude forests and elsewhere.


Asunto(s)
Tracheophyta , Dióxido de Carbono , Isótopos de Carbono/análisis , Bosques , Árboles , Tsuga , Estados Unidos , Agua
7.
Oecologia ; 192(1): 241-259, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31686228

RESUMEN

Recent analyses on the length of drought recovery in forests have shown multi-year legacies, particularly in semi-arid, coniferous ecosystems. Such legacies are usually attributed to ecophysiological memory, although drought frequency itself, and its effect on overlapping recovery times, could also contribute. Here, we describe a multi-decadal study of drought legacies using tree-ring carbon-isotope ratios (δ13C) and ring-width index (RWI) in Pinus ponderosa at 13 montane sites traversing a winter-summer precipitation gradient in the Southwestern U.S. Sites and trees were selected to avoid collection biases that exist in archived tree-ring databanks. The spatial hydroclimate gradient and winter-summer seasonal patterns were well predicted by seasonal and inter-annual correlations between δ13C and atmospheric vapor pressure deficit (VPD). Using VPD, we found that the probability of extreme drought has increased up to 70% in this region during the past two decades. When the recent increase in drought frequency was not considered, multi-year legacies in both δ13C and RWI were observed at most sites. When the increase in drought frequency was detrended from tree-ring chronologies, some sites exhibited short legacies (1-2 years) in both δ13C and RWI, and there was a sight trend for longer legacies in RWI. However, when considered broadly across the region and multiple decades, no significant legacies were observed, which contrasts with past studies. Our results reveal that a contribution to observed multi-year legacies is related to shifts in the climate system itself, an exogenous factor, that must be considered along with physiological memory.


Asunto(s)
Sequías , Ecosistema , Cambio Climático , Bosques , Sudoeste de Estados Unidos
8.
Proc Natl Acad Sci U S A ; 113(33): 9310-4, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27482085

RESUMEN

Relict woolly mammoth (Mammuthus primigenius) populations survived on several small Beringian islands for thousands of years after mainland populations went extinct. Here we present multiproxy paleoenvironmental records to investigate the timing, causes, and consequences of mammoth disappearance from St. Paul Island, Alaska. Five independent indicators of extinction show that mammoths survived on St. Paul until 5,600 ± 100 y ago. Vegetation composition remained stable during the extinction window, and there is no evidence of human presence on the island before 1787 CE, suggesting that these factors were not extinction drivers. Instead, the extinction coincided with declining freshwater resources and drier climates between 7,850 and 5,600 y ago, as inferred from sedimentary magnetic susceptibility, oxygen isotopes, and diatom and cladoceran assemblages in a sediment core from a freshwater lake on the island, and stable nitrogen isotopes from mammoth remains. Contrary to other extinction models for the St. Paul mammoth population, this evidence indicates that this mammoth population died out because of the synergistic effects of shrinking island area and freshwater scarcity caused by rising sea levels and regional climate change. Degradation of water quality by intensified mammoth activity around the lake likely exacerbated the situation. The St. Paul mammoth demise is now one of the best-dated prehistoric extinctions, highlighting freshwater limitation as an overlooked extinction driver and underscoring the vulnerability of small island populations to environmental change, even in the absence of human influence.


Asunto(s)
Extinción Biológica , Mamuts/fisiología , Alaska , Animales , Factores de Tiempo
9.
Plant Cell Environ ; 41(12): 2758-2772, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29995977

RESUMEN

We developed novel approaches for using the isotope composition of tree-ring subdivisions to study seasonal dynamics in tree-climate relations. Across a 30-year time series, the δ13 C and δ18 O values of the earlywood (EW) cellulose in the annual rings of Pinus ponderosa reflected relatively high intrinsic water-use efficiencies and high evaporative fractionation of 18 O/16 O, respectively, compared with the false latewood (FLW), summerwood (SW), and latewood (LW) subdivisions. This result is counterintuitive, given the spring origins of the EW source water and midsummer origins of the FLW, SW, and LW. With the use of the Craig-Gordon (CG), isotope-climate model revealed that the isotope ratios in all of the ring subdivision are explained by the existence of seasonal lags, lasting several weeks, between the initial formation of tracheids and the production of cellulosic secondary cell walls during maturation. In contrast to some past studies, modification of the CG model according to conventional methods to account for mixing of needle water between fractionated and nonfractionated sources did not improve the accuracy of predictions. Our results reveal new potential in the use of tree-ring isotopes to reconstruct past intra-annual tree-climate relations if lags in cambial phenology are reconciled with isotope ratio observations and included in theoretical treatments.


Asunto(s)
Cámbium/química , Isótopos de Carbono/análisis , Isótopos de Oxígeno/análisis , Cámbium/crecimiento & desarrollo , Isótopos de Carbono/metabolismo , Clima , Isótopos de Oxígeno/metabolismo , Pinus ponderosa/química , Pinus ponderosa/crecimiento & desarrollo , Estaciones del Año , Árboles/química , Árboles/crecimiento & desarrollo
10.
Glob Chang Biol ; 24(11): 5332-5347, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29999573

RESUMEN

Tree-ring carbon and oxygen isotope ratios have been used to understand past dynamics in forest carbon and water cycling. Recently, this has been possible for different parts of single growing seasons by isolating anatomical sections within individual annual rings. Uncertainties in this approach are associated with correlated climate legacies that can occur at a higher frequency, such as across successive seasons, or a lower frequency, such as across years. The objective of this study was to gain insight into how legacies affect cross-correlation in the δ13 C and δ18 O isotope ratios in the earlywood (EW) and latewood (LW) fractions of Pinus ponderosa trees at thirteen sites across a latitudinal gradient influenced by the North American Monsoon (NAM) climate system. We observed that δ13 C from EW and LW has significant positive cross-correlations at most sites, whereas EW and LW δ18 O values were cross-correlated at about half the sites. Using combined statistical and mechanistic models, we show that cross-correlations in both δ13 C and δ18 O can be largely explained by a low-frequency (multiple-year) mode that may be associated with long-term climate change. We isolated, and statistically removed, the low-frequency correlation, which resulted in greater geographical differentiation of the EW and LW isotope signals. The remaining higher-frequency (seasonal) cross-correlations between EW and LW isotope ratios were explored using a mechanistic isotope fractionation-climate model. This showed that lower atmospheric vapor pressure deficits associated with monsoon rain increase the EW-LW differentiation for both δ13 C and δ18 O at southern sites, compared to northern sites. Our results support the hypothesis that dominantly unimodal precipitation regimes, such as near the northern boundary of the NAM, are more likely to foster cross-correlations in the isotope signals of EW and LW, potentially due to greater sharing of common carbohydrate and soil water resource pools, compared to southerly sites with bimodal precipitation regimes.


Asunto(s)
Ciclo del Carbono , Pinus ponderosa/metabolismo , Estaciones del Año , Árboles/metabolismo , Agua/metabolismo , Isótopos de Carbono/metabolismo , Cambio Climático , Bosques , Isótopos de Oxígeno , Lluvia , Suelo
12.
Rapid Commun Mass Spectrom ; 31(24): 2081-2091, 2017 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28940773

RESUMEN

RATIONALE: We evaluated the applicability of tree-ring δ13 C and δ18 O values in bulk wood - instead of the more time and lab-consuming α-cellulose δ13 C and δ18 O values, to assess climate and physiological signals across multiple sites and for six tree species along a latitudinal gradient (35°97'N to 45°20'N) of the northeastern United States. METHODS: Wood cores (n = 4 per tree) were sampled from ten trees per species. Cores were cross-dated within and across trees at each site, and for the last 30 years. Seven years, including the driest on record, were selected for this study. The δ13 C and δ18 O values were measured on two of the ten trees from the bulk wood and the α-cellulose. The offsets between materials in δ13 C and δ18 O values were assessed. Correlation and multiple regression analyses were used to evaluate the strength of the climate signal across sites. Finally the relationship between δ13 C and δ18 O values in bulk wood vs α-cellulose was analyzed to assess the consistency of the interpretation, in terms of CO2 assimilation and stomatal conductance, from both materials. RESULTS: We found offsets of 1.1‰ and 5.6‰ between bulk and α-cellulose for δ13 C and δ18 O values, respectively, consistent with offset values reported in the literature. Bulk wood showed similar or stronger correlations to climate parameters than α-cellulose for the investigated sites. In particular, temperature and vapor pressure deficit and standard precipitation-evaporation index (SPEI) were the most visible climate signals recorded in δ13 C and δ18 O values, respectively. For most of the species, there was no relationship between δ13 C and δ18 O values, regardless of the wood material considered. CONCLUSIONS: Extraction of α-cellulose was not necessary to detect climate signals in tree rings across the four investigated sites. Furthermore, the physiological information inferred from the dual isotope approach was similar for most of the species regardless of the material considered.


Asunto(s)
Isótopos de Carbono/análisis , Celulosa/química , Clima , Isótopos de Oxígeno/análisis , Madera/química , Carya/química , Celulosa/análisis , Espectrometría de Masas , New England , Pinaceae/química , Quercus/química , Análisis de Regresión , Árboles/química , Agua/química , Madera/análisis
14.
Science ; 376(6594): 758-761, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549405

RESUMEN

Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.


Asunto(s)
Secuestro de Carbono , Bosques , Árboles , Árboles/crecimiento & desarrollo
15.
R Soc Open Sci ; 5(6): 180145, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30110451

RESUMEN

Palaeoenvironmental records from the now-submerged Bering Land Bridge (BLB) covering the Last Glacial Maximum (LGM) to the present are needed to document changing environments and connections with the dispersal of humans into North America. Moreover, terrestrially based records of environmental changes are needed in close proximity to the re-establishment of circulation between Pacific and Atlantic Oceans following the end of the last glaciation to test palaeo-climate models for the high latitudes. We present the first terrestrial temperature and hydrologic reconstructions from the LGM to the present from the BLB's south-central margin. We find that the timing of the earliest unequivocal human dispersals into Alaska, based on archaeological evidence, corresponds with a shift to warmer/wetter conditions on the BLB between 14 700 and 13 500 years ago associated with the early Bølling/Allerød interstadial (BA). These environmental changes could have provided the impetus for eastward human dispersal at that time, from Western or central Beringia after a protracted human population standstill. Our data indicate substantial climate-induced environmental changes on the BLB since the LGM, which would potentially have had significant influences on megafaunal and human biogeography in the region.

16.
Sci Rep ; 3: 1597, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23579869

RESUMEN

The reasons for the development and collapse of Maya civilization remain controversial and historical events carved on stone monuments throughout this region provide a remarkable source of data about the rise and fall of these complex polities. Use of these records depends on correlating the Maya and European calendars so that they can be compared with climate and environmental datasets. Correlation constants can vary up to 1000 years and remain controversial. We report a series of high-resolution AMS (14)C dates on a wooden lintel collected from the Classic Period city of Tikal bearing Maya calendar dates. The radiocarbon dates were calibrated using a Bayesian statistical model and indicate that the dates were carved on the lintel between AD 658-696. This strongly supports the Goodman-Martínez-Thompson (GMT) correlation and the hypothesis that climate change played an important role in the development and demise of this complex civilization.


Asunto(s)
Cronología como Asunto , Indígenas Centroamericanos/historia , Datación Radiométrica/métodos , Madera/análisis , América Central , Europa (Continente) , Historia Medieval , Humanos , Estadística como Asunto
17.
Int Rev Hydrobiol ; 97(4): 356-374, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28090189

RESUMEN

Leptocythere karamani Klie, one of few non-marine species of the family Leptocytheridae (Ostracoda), is redescribed from specimens recently collected from the long-lived Lake Ohrid on the Albanian-Macedonian border. Detailed morphologies of valves and limbs of this species were compared with those of other Ohrid-Prespa leptocytherids, of some recent marine representatives of the genera Leptocythere Sars and Callistocythere Ruggieri from the Mediterranean, Irish and Baltic seas as well as with that of fossil non-marine species from the Miocene palaeo-Lake Pannon belonging to the genera Amnicythere Devoto and Euxinocythere Stancheva. Comparison with other species of Leptocytheridae inhabiting fresh to brackish waters of the Black-Azov, Caspian and Aral seas were also carried out using descriptions provided in the literature. Based on the comparative morphological studies it is shown that L. karamani and other Ohrid leptocytherids have a number of characters distinguishing them from other members of the genus Leptocythere but demonstrating a relationship with species of the genus Amnicythere. The most reliable of these characters are: a) anterior valve vestibulum from where mostly uni-ramified pore canals start, b) the entomodont hinge type with a strong anterior anti-slip tooth, a smooth posterior anti-slip bar on the left valve, and c) the hemipenis with underdeveloped lateral lobe and reduced clasping organ. From this strong evidence, the Ohrid leptocytherid species are allocated to the genus Amnicythere. Finally, a biogeographic scenario on the origin of the Ohrid leptocytherids is proposed which matches the "Lake Pannon derivate hypothesis". Close relationship of the Ohrid Amnicythere species with the non-marine leptocytherid taxa from the Neogene lakes of Central and Eastern Europe and with extant taxa from the Black and Caspian seas may indicate that the Ohrid Amnicythere derived from Lake Pannon species which were able to colonise lakes in Southern Europe through a stepping-stone process and subsequently to adapt to freshwater environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA