RESUMEN
tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.
Asunto(s)
Neoplasias de la Mama/metabolismo , Fosfoproteínas/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Western Blotting , Neoplasias de la Mama/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ratones , Ratones Transgénicos , Fosfoproteínas/genética , ARN de Transferencia de Ácido Glutámico/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , NucleolinaRESUMEN
BACKGROUND: Leishmaniasis is a zoonotic disease endemic in the Mediterranean region where Leishmania infantum is the causative agent of human and canine infection. Characterization of this parasite at the subspecies level can be useful in epidemiological studies, to evaluate the clinical course of the disease (e.g. resistant strains, visceral and cutaneous forms of leishmaniasis) as well as to identify infection reservoirs. Multilocus enzyme electrophoresis (MLEE), a method currently recognized as the reference method for characterizing and identifying strains of Leishmania, is cumbersome and time-consuming and requires cultured parasites. These disadvantages have led to the development of other methods, such as multilocus microsatellite typing (MLMT) and multilocus sequence typing (MLST), for typing Leishmania parasites; however, these methods have not yet been applied for routine use. In this study, we first used MLST to identify informative polymorphisms on single-copy genes coding for metabolic enzymes, following which we developed two rapid genotyping assays based on high-resolution melting (HRM) analysis to explore these polymorphisms in L. infantum parasites. METHODS: A customized sequencing panel targeting 14 housekeeping genes was designed and MLST analysis was performed on nine L. infantum canine and human strains/isolates. Two quantitative real-time PCR-HRM assays were designed to analyze two informative polymorphisms on malic enzyme (ME) and glucose-6-phosphate isomerase (GPI) genes (390T/G and 1831A/G, respectively). The two assays were applied to 73 clinical samples/isolates from central/southern Italy and Pantelleria island, and the results were confirmed by DNA sequencing in a subset of samples. RESULTS: The MLST analysis, together with sequences available in the Genbank database, enabled the identification of two informative polymorphisms on the genes coding for ME and GPI. The fast screening of these polymorphisms using two HRM-based assays in 73 clinical samples/isolates resulted in the identification of seven genotypes. Overall, genotype 1 (sequence type 390T/1831G) was the most highly represented (45.2%) in the overall sample and correlated with the most common L. infantum zymodemes (MON-1, MON-72). Interestingly, in Pantelleria island, the most prevalent genotype (70.6%) was genotype 6 (sequence type 390T/1831A). CONCLUSIONS: Applying our HRM assays on clinical samples allowed us to identify seven different genotypes without the need for parasite isolation and cultivation. We have demonstrated that these assays could be used as fast, routine and inexpensive tools for epidemiological surveillance of L. infantum or for the identification of new infection reservoirs.
Asunto(s)
Glucosa-6-Fosfato Isomerasa , Leishmania infantum , Proteínas Protozoarias , Genotipo , Glucosa-6-Fosfato Isomerasa/genética , Leishmania infantum/enzimología , Leishmania infantum/genética , Tipificación de Secuencias Multilocus , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Protozoarias/genéticaRESUMEN
This article reports a rapid and unexpected spread of colonization cases of NDM-1 carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in a neonatal surgical unit (NSU) at Bambino Gesù Children's Hospital in Rome, Italy. Between the 16th of November 2020 and the 18th of January 2021, a total of 20 NDM-1 carbapenemase-producing K. pneumoniae (n = 8) and E. coli (n = 12) were isolated from 17 out of 230 stool samples collected from neonates admitted in the aforementioned ward and time period by an active surveillance culture program routinely in place to monitor the prevalence of colonization/infection with multidrug-resistant Gram-negative microorganisms. All strains were characterized by antimicrobial susceptibility testing, detection of resistance determinants, PCR-based replicon typing (PBRT) and multilocus-sequence typing (MLST). All isolates were highly resistant to most of the tested antibiotics, and molecular characterization revealed that all of them harbored the blaNDM-1 gene. Overall, IncA/C was the most common Inc group (n = 20/20), followed by IncFIA (n = 17/20), IncFIIK (n = 14/20) and IncFII (n = 11/20). MLST analysis was performed on all 20 carbapenemase-producing Enterobacterales (CPE) strains, revealing three different Sequence Types (STs) among E. coli isolates, with the prevalence of ST131 (n = 10/12; 83%). Additionally, among the 8 K. pneumoniae strains we found 2 STs with the prevalence of ST37 (n = 7/8; 87.5%). Although patient results were positive for CPE colonization during their hospital stay, infection control interventions prevented their dissemination in the ward and no cases of infection were recorded in the same time period.
RESUMEN
The current global pandemic of COVID-19 is characterized by waves of infection due to the emergence of new SARS-CoV-2 variants carrying mutations on the Spike (S) protein gene. Since autumn 2020 many Variants of Concern (VOC) have been reported: Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, Omicron/B.1.1.529, and sublineages. Surveillance of genomic variants is currently based on whole-genome sequencing (WGS) of viral genomes on a random fraction of samples positive to molecular tests. WGS involves high costs, extended analysis time, specialized staff, and expensive instruments compared to a PCR-based test. To rapidly identify the VOCs in positive samples, six assays based on real-time PCR and high-resolution melting (HRM) were designed on the S gene and applied to 120 oro/nasopharyngeal swab samples collected from October 2020 to June 2022 (106 positive and 14 negative samples). Overall, the assays showed 100% specificity and sensitivity compared with commercial PCR tests for COVID-19. Moreover, 104 samples out of 106 (98.1%) were correctly identified as follows: 8 Wuhan (wild type), 12 Alpha, 23 Delta, 46 Omicron BA.1/BA.1.1, 15 Omicron BA.2/BA.4/BA.5. With our lab equipment, about 10 samples can be processed every 3 h at the cost of less than 10 ($ 10.60) per sample, including RNA extraction. The implementation of this approach could help local epidemiological surveillance and clinical decision-making.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa , BioensayoRESUMEN
Nontyphoidal salmonellosis (NTS) is the second most commonly reported gastrointestinal infection in humans and an important cause of food-borne outbreaks in Europe. The use of antimicrobial agents for animals, plants, and food production contributes to the development of antibiotic-resistant Salmonella strains that are transmissible to humans through food. The aim of this study was to investigate the presence and the potential dissemination of multidrug-resistant (MDR) Salmonella strains isolated in the Marche Region (Central Italy) via the food chain. Strains were isolated from different sources: food, human, food animal/livestock, and the food-processing environment. Among them, we selected MDR strains to perform their further characterization in terms of resistance to tetracycline agent, carriage of tet genes, and plasmid profiles. Tetracycline resistance genes were detected by PCR and plasmid replicons by PCR-based replicon typing (PBRT). A total of 102 MDR Salmonella strains were selected among the most prevalent serovars: S. Infantis (n = 36/102), S. Derby (n = 20/102), S. Typhimurium (n = 18/102), and a monophasic variant of S. Typhimurium (MVST, n = 28/102). Resistance to sulfisoxazole (86%) and tetracycline (81%) were the most common, followed by ampicillin (76%). FIIS was the most predominant replicon (17%), followed by FII (11%) and FIB (11%) belonging to the IncF incompatibility group. Concerning the characterization of tet genes, tetB was the most frequently detected (27/89), followed by tetA (10/89), tetG (5/89), and tetM (1/89). This study showed the potential risk associated with the MDR Salmonella strains circulating along the food chain. Hence, epidemiological surveillance supported by molecular typing could be a very useful tool to prevent transmission of resistant Salmonella from food to humans, in line with the One Health approach.
RESUMEN
Swine farms are considered a hotspot of antimicrobial resistance and may contribute to the spread of antibiotic-resistant and/or pathogenic bacteria into the environment as well as to farm workers. In this study, swine fecal samples have been collected over the primary production, selecting three categories, i.e., "Suckling piglets", "Weaning pigs" and "Fatteners", in six intensive swine farms, for two years. Feces were analysed for the detection and abundance of class 1 integrons (used as proxy of antibiotic resistance and of anthropogenic pollution), and of enterococci [fecal indicator bacteria (FIB) and potentially pathogenic for humans] by quantitative Real Time PCR. Furthermore, Enterococcus faecalis and Enterococcus faecium were isolated, analysed for the presence of the intI1 gene by Real Time PCR and genetically typed by Pulsed-Field Gel Electrophoresis. Both enterococci and class 1 integrons were significantly more abundant in the Suckling piglets (p = 0.0316 and 0.0242, respectively). About 8% of the isolated enterococci were positive for the intI1 gene by Real Time PCR. E. faecalis and E. faecium were found genetically heterogeneous and no specific pattern could be identified as the driver for their presence along the pig primary production. These findings suggest that the "Suckling piglets" category of production represents the key point where to mitigate the risk of transmission of enterococci and class 1 integrons with associated antibiotic resistance genes to humans and spread into the environment.
Asunto(s)
Enterococcus faecium , Enterococcus , Humanos , Porcinos , Animales , Integrones/genética , Granjas , Antibacterianos/farmacología , Heces/microbiología , Pruebas de Sensibilidad Microbiana/veterinaria , Farmacorresistencia Bacteriana/genéticaRESUMEN
The spread of carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli), is a serious public health threat in pediatric hospitals. The associated risk in newborns is due to their underdeveloped immune system and limited treatment options. The aim was to estimate the prevalence and circulation of CPE among the neonatal intensive units of a major pediatric hospital in Italy and to investigate their molecular features. A total of 124 CPE were isolated from rectal swabs of 99 newborn patients at Bambino Gesù Children's Hospital between July 2016 and December 2019. All strains were characterized by antimicrobial susceptibility testing, detection of resistance genes, and PCR-based replicon typing (PBRT). One strain for each PBRT profile of K. pneumoniae or E. coli was characterized by multilocus-sequence typing (MLST). Interestingly, the majority of strains were multidrug-resistant and carried the blaNDM gene. A large part was characterized by a multireplicon status, and FII, A/C, FIA (15%) was the predominant. Despite the limited size of collection, MLST analysis revealed a high number of Sequence Types (STs): 14 STs among 28 K. pneumoniae and 8 STs among 11 E. coli, with the prevalence of the well-known clones ST307 and ST131, respectively. This issue indicated that some strains shared the same circulating clone. We identified a novel, so far never described, ST named ST10555, found in one E. coli strain. Our investigation showed a high heterogeneity of CPE circulating among neonatal units, confirming the need to monitor their dissemination in the hospital also through molecular methods.
RESUMEN
BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) is the most common form of ectodermal dysplasia and is mainly associated with mutations in the EDA, EDAR, and EDARADD responsible for the development of ectodermal-derived structures. HED displays different modes of inheritance according to the gene that is involved, with X-linked EDA-related HED being the most frequent form of the disease. METHODS: Two families with tooth agenesis and manifestations of HED underwent clinical examination and EDA, EDAR, and EDARADD genetic analysis. The impact of the novel variant on the protein was evaluated through bioinformatics tools, whereas molecular modeling was used to predict the effect on the protein structure. RESULTS: A novel missense variant was identified in the EDAR (c.287T>C, p.Phe96Ser) of a female child proband and her mother, accounting for autosomal dominant HED. The genetic variant c.866G>A (p.Arg289His) in EDA, which has been previously described, was observed in the male proband of another family confirming its role in X-linked HED. The inheritance model of the missense mutation showed a different relationship with X-linked HED and non-syndromic tooth agenesis. CONCLUSION: Our findings provide evidence of variable expression of HED in heterozygous females, which should be considered for genetic counseling, and different modes of inheritance related to tooth development.
Asunto(s)
Anodoncia/genética , Displasia Ectodérmica/genética , Ectodisplasinas/genética , Receptor Edar/genética , Adulto , Anodoncia/patología , Preescolar , Displasia Ectodérmica/patología , Ectodisplasinas/química , Ectodisplasinas/metabolismo , Receptor Edar/química , Receptor Edar/metabolismo , Femenino , Genes Dominantes , Humanos , Masculino , Mutación Missense , Linaje , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , SíndromeRESUMEN
The emerging spread of carbapenemase-producing Enterobacterales (CPE) strains, in particular, Klebsiella pneumoniae and Escherichia coli, has become a significant threat to hospitalized patients. Carbapenemase genes are frequently located on plasmids than can be exchanged among clonal strains, increasing the antibiotic resistance rate. The aim of this study was to determine the prevalence of CPE in patients upon their admission and to analyze selected associated factors. An investigation of the antibiotic resistance and genetic features of circulating CPE was carried out. Phenotypic tests and molecular typing were performed on 48 carbapenemase-producing strains of K. pneumoniae and E. coli collected from rectal swabs of adult patients. Carbapenem-resistance was confirmed by PCR detection of resistance genes. All strains were analyzed by PCR-based replicon typing (PBRT) and multilocus sequence typing (MLST) was performed on a representative isolate of each PBRT profile. More than 50% of the strains were found to be multidrug-resistant, and the bla KPC gene was detected in all the isolates with the exception of an E. coli strain. A multireplicon status was observed, and the most prevalent profile was FIIK, FIB KQ (33%). MLST analysis revealed the prevalence of sequence type 512 (ST512). This study highlights the importance of screening patients upon their admission to limit the spread of CRE in hospitals.
RESUMEN
The parasite protozoan Leishmania, the causative agent of leishmaniasis, includes two subgenera of medical interest: Leishmania (Leishmania) and Leishmania (Viannia). Parasite species detection and characterization is crucial to choose treatment protocols and to monitor the disease evolution. Molecular approaches can speed up and simplify the diagnostic process. In particular, several molecular assays target the mitochondrial DNA minicircle network (kDNA) that characterizes the Leishmania genus. We previously proposed a qPCR assay targeting kDNA, followed by high resolution melt (HRM) analysis (qPCR-ML) to distinguish L. (L.) infantum and L. (L.) amazonensis from L. Viannia species. Successively, this assay has been integrated with other qPCR assays, to differentiate L. (L.) infantum, L. (L.) amazonensis and L. (L.) mexicana. In this work, we tested the applicability of our qPCR-ML assay on L. (L.) donovani, L. (L.) major, L. (L.) tropica and L. (L.) aethiopica, showing that the qPCR-ML assay can also amplify Old World species, different from L. (L.) infantum, with good quantification limits (1 × 10-4-1 × 10-6 ng/pcr tube). Moreover, we evaluated 11 L. (L.) infantum strains/isolates, evidencing the variability of the kDNA minicircle target molecules among the strains/isolates of the same species, and pointing out the possibility of quantification using different strains as reference. Taken together, these data account for the consideration of qPCR-ML as a quantitative pan-Leishmania assay.
RESUMEN
Globally, Streptococcus pyogenes poses a continuous burden on human health, causing both self-limiting and life-threatening diseases. Therefore, studying the profile of virulence genes and their combinations is essential to monitor the epidemiology and pathogenic potential of this important species. Thus, the aim of this study was to analyze related genetic features of clinical strains collected in Italy in 2012 in order to obtain a valid picture of their virulence profile that could be compared to similar studies made in other countries approximately in the same period. We conducted emm typing and fibronectin-collagen-T antigen (FCT) region typing in 122 Streptococcus pyogenes strains. Furthermore, several additional virulence genes were screened by polymerase chain reaction. We found correlations between emm types and FCT region profiles. emm1 strains were mainly associated with FCT2 and FCT6, while emm89 and emm12 strains were associated with FCT4. FCT5 was mainly represented in emm4, emm6, and emm75 strains. Significantly, we defined subtypes for each FCT type based on the differences in single and double loci compared to the reference scheme used for the classification of the FCT region. In addition, new FCT-region variants with differences in multiple loci were also recorded. Cluster analysis based on virulence gene profiling showed a non-random distribution within each emm type. This study added new data to existing studies conducted worldwide and revealed new variability scores in circulating Streptococcus pyogenes strains and new assortments in well-established virulence gene signatures.
RESUMEN
The aim of this study was to assess the microbiological quality of ready-to-eat (RTE) iceberg lettuce. Our investigation was based on the consumption tendency of university students considered a target market for this product. A total of 78 RTE samples were collected from chain supermarkets and analysed for the enumeration of aerobic mesophilic count (AMC), Escherichia coli and the detection of Salmonella spp. and Listeria monocytogenes. All samples were negative for the presence of pathogens. The mean value of AMC at the beginning, in the middle and after the expiration date was: 6.88, 8.51 and 8.72 log CFU g-1, respectively. The same investigation was performed on 12 samples of fresh iceberg lettuce samples. No pathogens were found and the mean value of AMC was lower than the RTE category (5.73 log CFU g-1; P<0.05). The effectiveness of 5 washing methods was determined on 15 samples of both fresh and RTE iceberg lettuce. Samples were washed for 15' and 30' in tap water (500 mL), tap water with NaCl (4 g/500 mL), tap water with bicarbonate (8 g/500 mL), tap water with vinegar (10 mL/500 mL) and tap water with chlorine-based disinfectant (10 mL/500 mL). A significant bacterial load reduction was recorded for vinegar and disinfectant after 30' and 15', respectively. Overall, these results showed that RTE iceberg lettuce is more contaminated than the fresh product. Also, the consumption in the first few days of packaging and after washing with disinfectants reduces the risk for health consumers.
RESUMEN
PURPOSE: The presence of Staphylococcus aureus in poultry and poultry products, including eggs, increases its potential to enter the food chain, resulting in foodborne diseases. In this context, eggshell colonization by staphylococci may represent a risk factor. This study aimed to investigate the contamination of rural eggshell by S. aureus and to characterize the key features of the isolated strains. METHODOLOGY: Antibiotic resistance was assessed by disc diffusion. Resistant isolates were analysed by PCR for the identification of associated genetic determinants of resistance. PCR was also used to screen for the presence of genes coding for toxins, namely, sea, sec, sei, sem, seo and tst. The genetic characterization was extended by means of agr locus typing and spa typing. RESULTS: 34 S. aureus were isolated. Macrolide- and tetracycline-resistant strains were prevalent. All strains were susceptible to oxacillin, cefoxitin and trimethoprim-sulfamethoxazole. PCR screening for genes encoding enterotoxins detected several virulence patterns, which, together with spa-typing and agr-locus typing, allowed cluster analysis and the description of novel clones. CONCLUSION: Continuous monitoring of staphylococci is needed also in rural or natural settings. Increasing the number of samples and expanding the geographical region will be needed to further extend the significance of the study.