Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 41(21): e112435, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36120982

RESUMEN

The contribution of RNA modifications to whole-body regeneration remains unclear. In this issue, Dagan et al (2022) show that m6a mRNA pathway components are critically required for stem cell differentiation, survival, and tissue renewal in the planarian Schmidtea mediterranea.


Asunto(s)
Planarias , Células Madre , Animales , Metilación , Células Madre/metabolismo , Diferenciación Celular/genética , ARN Mensajero/metabolismo , Interferencia de ARN
2.
Nature ; 572(7771): 655-659, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31413361

RESUMEN

Differential coordination of growth and patterning across metazoans gives rise to a diversity of sizes and shapes at tissue, organ and organismal levels. Although tissue size and tissue function can be interdependent1-5, mechanisms that coordinate size and function remain poorly understood. Planarians are regenerative flatworms that bidirectionally scale their adult body size6,7 and reproduce asexually, via transverse fission, in a size-dependent manner8-10. This model offers a robust context to address the gap in knowledge that underlies the link between size and function. Here, by generating an optimized planarian fission protocol in Schmidtea mediterranea, we show that progeny number and the frequency of fission initiation are correlated with parent size. Fission progeny size is fixed by previously unidentified mechanically vulnerable planes spaced at an absolute distance along the anterior-posterior axis. An RNA interference screen of genes for anterior-posterior patterning uncovered components of the TGFß and Wnt signalling pathways as regulators of the frequency of fission initiation rather than the position of fission planes. Finally, inhibition of Wnt and TGFß signalling during growth altered the patterning of mechanosensory neurons-a neural subpopulation that is distributed in accordance with worm size and modulates fission behaviour. Our study identifies a role for TGFß and Wnt in regulating size-dependent behaviour, and uncovers an interdependence between patterning, growth and neurological function.


Asunto(s)
Tipificación del Cuerpo/fisiología , Tamaño Corporal/fisiología , Planarias/crecimiento & desarrollo , Planarias/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Tipificación del Cuerpo/genética , Tamaño Corporal/genética , Sistema Nervioso Central/citología , Mecanorreceptores/citología , Mecanorreceptores/fisiología , Planarias/anatomía & histología , Planarias/citología , Interferencia de ARN , Reproducción Asexuada/fisiología , Vía de Señalización Wnt/genética
3.
Nat Cell Biol ; 23(9): 939-952, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34475533

RESUMEN

Regeneration requires the coordination of stem cells, their progeny and distant differentiated tissues. Here, we present a comprehensive atlas of whole-body regeneration in Schmidtea mediterranea and identify wound-induced cell states. An analysis of 299,998 single-cell transcriptomes captured from regeneration-competent and regeneration-incompetent fragments identified transient regeneration-activated cell states (TRACS) in the muscle, epidermis and intestine. TRACS were independent of stem cell division with distinct spatiotemporal distributions, and RNAi depletion of TRACS-enriched genes produced regeneration defects. Muscle expression of notum, follistatin, evi/wls, glypican-1 and junctophilin-1 was required for tissue polarity. Epidermal expression of agat-1/2/3, cyp3142a1, zfhx3 and atp1a1 was important for stem cell proliferation. Finally, expression of spectrinß and atp12a in intestinal basal cells, and lrrk2, cathepsinB, myosin1e, polybromo-1 and talin-1 in intestinal enterocytes regulated stem cell proliferation and tissue remodelling, respectively. Our results identify cell types and molecules that are important for regeneration, indicating that regenerative ability can emerge from coordinated transcriptional plasticity across all three germ layers.


Asunto(s)
Células Epidérmicas/citología , Regeneración/fisiología , Células Madre/metabolismo , Animales , Mediterranea/metabolismo , Interferencia de ARN/fisiología , Transcriptoma/fisiología
4.
Elife ; 52016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782880

RESUMEN

Mechanical force and Wnt signaling activate ß-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate ß-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 ß-catenin and increased ß-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating ß-catenin through Casein Kinase I inhibition or Wnt3A addition increased ß-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/ß-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of ß-catenin and Wnt-dependent ß-catenin stabilization synergize to increase ß-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis.


Asunto(s)
Fenómenos Mecánicos , Mitosis , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animales , Perros , Células de Riñón Canino Madin Darby , Fosforilación , Procesamiento Proteico-Postraduccional , Vía de Señalización Wnt , Familia-src Quinasas/metabolismo
5.
Science ; 348(6238): 1024-7, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26023140

RESUMEN

Mechanical strain regulates the development, organization, and function of multicellular tissues, but mechanisms linking mechanical strain and cell-cell junction proteins to cellular responses are poorly understood. Here, we showed that mechanical strain applied to quiescent epithelial cells induced rapid cell cycle reentry, mediated by independent nuclear accumulation and transcriptional activity of first Yap1 and then ß-catenin. Inhibition of Yap1- and ß-catenin-mediated transcription blocked cell cycle reentry and progression through G1 into S phase, respectively. Maintenance of quiescence, Yap1 nuclear exclusion, and ß-catenin transcriptional responses to mechanical strain required E-cadherin extracellular engagement. Thus, activation of Yap1 and ß-catenin may represent a master regulator of mechanical strain-induced cell proliferation, and cadherins provide signaling centers required for cellular responses to externally applied force.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Cadherinas/metabolismo , Ciclo Celular/genética , Fosfoproteínas/biosíntesis , Estrés Mecánico , Transcripción Genética , beta Catenina/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Adhesión Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Perros , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Células de Riñón Canino Madin Darby , Fosfoproteínas/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA