Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.766
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(20): 4404-4421.e20, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774679

RESUMEN

Persistent DNA double-strand breaks (DSBs) in neurons are an early pathological hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with the potential to disrupt genome integrity. We used single-nucleus RNA-seq in human postmortem prefrontal cortex samples and found that excitatory neurons in AD were enriched for somatic mosaic gene fusions. Gene fusions were particularly enriched in excitatory neurons with DNA damage repair and senescence gene signatures. In addition, somatic genome structural variations and gene fusions were enriched in neurons burdened with DSBs in the CK-p25 mouse model of neurodegeneration. Neurons enriched for DSBs also had elevated levels of cohesin along with progressive multiscale disruption of the 3D genome organization aligned with transcriptional changes in synaptic, neuronal development, and histone genes. Overall, this study demonstrates the disruption of genome stability and the 3D genome organization by DSBs in neurons as pathological steps in the progression of neurodegenerative diseases.


Asunto(s)
Roturas del ADN de Doble Cadena , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , ADN , Reparación del ADN/genética , Enfermedades Neurodegenerativas/genética , Neuronas/fisiología , Análisis de la Célula Individual , Análisis de Secuencia de ARN , Inestabilidad Genómica
2.
Cell ; 186(20): 4386-4403.e29, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774678

RESUMEN

Altered microglial states affect neuroinflammation, neurodegeneration, and disease but remain poorly understood. Here, we report 194,000 single-nucleus microglial transcriptomes and epigenomes across 443 human subjects and diverse Alzheimer's disease (AD) pathological phenotypes. We annotate 12 microglial transcriptional states, including AD-dysregulated homeostatic, inflammatory, and lipid-processing states. We identify 1,542 AD-differentially-expressed genes, including both microglia-state-specific and disease-stage-specific alterations. By integrating epigenomic, transcriptomic, and motif information, we infer upstream regulators of microglial cell states, gene-regulatory networks, enhancer-gene links, and transcription-factor-driven microglial state transitions. We demonstrate that ectopic expression of our predicted homeostatic-state activators induces homeostatic features in human iPSC-derived microglia-like cells, while inhibiting activators of inflammation can block inflammatory progression. Lastly, we pinpoint the expression of AD-risk genes in microglial states and differential expression of AD-risk genes and their regulators during AD progression. Overall, we provide insights underlying microglial states, including state-specific and AD-stage-specific microglial alterations at unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Regulación de la Expresión Génica , Inflamación/patología , Microglía/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Epigenoma
3.
Cell ; 186(20): 4422-4437.e21, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774680

RESUMEN

Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Regulación de la Expresión Génica , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Epigenoma , Epigenómica , Estudio de Asociación del Genoma Completo
4.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774677

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Anciano , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Disfunción Cognitiva/metabolismo , Neuronas/metabolismo
5.
Nature ; 632(8026): 858-868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048816

RESUMEN

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Encéfalo , Proteína Reelina , Análisis de la Célula Individual , Transcriptoma , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Humanos , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Masculino , Femenino , Neuronas/metabolismo , Neuronas/patología , Anciano , Colina/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Transducción de Señal , Anciano de 80 o más Años , Cognición , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Autopsia , Redes Reguladoras de Genes , Moléculas de Adhesión Celular Neuronal/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética
6.
Nature ; 618(7965): 513-518, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37015289

RESUMEN

The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.

7.
Cell ; 152(3): 642-54, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23333102

RESUMEN

Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Epigénesis Genética , Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Núcleo Celular , Senescencia Celular , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Especificidad de Órganos
8.
Cell ; 153(3): 707-20, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622250

RESUMEN

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Redes Reguladoras de Genes , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Teorema de Bayes , Encéfalo/patología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismo
9.
Nature ; 603(7903): 893-899, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35158371

RESUMEN

Despite the importance of the cerebrovasculature in maintaining normal brain physiology and in understanding neurodegeneration and drug delivery to the central nervous system1, human cerebrovascular cells remain poorly characterized owing to their sparsity and dispersion. Here we perform single-cell characterization of the human cerebrovasculature using both ex vivo fresh tissue experimental enrichment and post mortem in silico sorting of human cortical tissue samples. We capture 16,681 cerebrovascular nuclei across 11 subtypes, including endothelial cells, mural cells and three distinct subtypes of perivascular fibroblast along the vasculature. We uncover human-specific expression patterns along the arteriovenous axis and determine previously uncharacterized cell-type-specific markers. We use these human-specific signatures to study changes in 3,945 cerebrovascular cells from patients with Huntington's disease, which reveal activation of innate immune signalling in vascular and glial cell types and a concomitant reduction in the levels of proteins critical for maintenance of blood-brain barrier integrity. Finally, our study provides a comprehensive molecular atlas of the human cerebrovasculature to guide future biological and therapeutic studies.


Asunto(s)
Células Endoteliales , Enfermedad de Huntington , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Humanos , Enfermedad de Huntington/metabolismo , Sistema Inmunológico , Neuroglía , Proteínas/metabolismo
10.
Nature ; 611(7937): 769-779, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36385529

RESUMEN

APOE4 is the strongest genetic risk factor for Alzheimer's disease1-3. However, the effects of APOE4 on the human brain are not fully understood, limiting opportunities to develop targeted therapeutics for individuals carrying APOE4 and other risk factors for Alzheimer's disease4-8. Here, to gain more comprehensive insights into the impact of APOE4 on the human brain, we performed single-cell transcriptomics profiling of post-mortem human brains from APOE4 carriers compared with non-carriers. This revealed that APOE4 is associated with widespread gene expression changes across all cell types of the human brain. Consistent with the biological function of APOE2-6, APOE4 significantly altered signalling pathways associated with cholesterol homeostasis and transport. Confirming these findings with histological and lipidomic analysis of the post-mortem human brain, induced pluripotent stem-cell-derived cells and targeted-replacement mice, we show that cholesterol is aberrantly deposited in oligodendrocytes-myelinating cells that are responsible for insulating and promoting the electrical activity of neurons. We show that altered cholesterol localization in the APOE4 brain coincides with reduced myelination. Pharmacologically facilitating cholesterol transport increases axonal myelination and improves learning and memory in APOE4 mice. We provide a single-cell atlas describing the transcriptional effects of APOE4 on the aging human brain and establish a functional link between APOE4, cholesterol, myelination and memory, offering therapeutic opportunities for Alzheimer's disease.


Asunto(s)
Apolipoproteína E4 , Encéfalo , Colesterol , Fibras Nerviosas Mielínicas , Oligodendroglía , Animales , Humanos , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Colesterol/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Autopsia , Células Madre Pluripotentes Inducidas , Neuronas/metabolismo , Neuronas/patología , Heterocigoto , Transporte Biológico , Homeostasis , Análisis de la Célula Individual , Memoria , Envejecimiento/genética , Perfilación de la Expresión Génica , Vaina de Mielina/metabolismo , Vaina de Mielina/patología
11.
Nature ; 611(7934): 115-123, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36180795

RESUMEN

Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.


Asunto(s)
Descubrimiento de Drogas , Predisposición Genética a la Enfermedad , Accidente Cerebrovascular Isquémico , Humanos , Isquemia Encefálica/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Accidente Cerebrovascular Isquémico/genética , Terapia Molecular Dirigida , Herencia Multifactorial , Europa (Continente)/etnología , Asia Oriental/etnología , África/etnología
12.
Am J Hum Genet ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39079537

RESUMEN

Transcriptome-wide association study (TWAS) tools have been applied to conduct proteome-wide association studies (PWASs) by integrating proteomics data with genome-wide association study (GWAS) summary data. The genetic effects of PWAS-identified significant genes are potentially mediated through genetically regulated protein abundance, thus informing the underlying disease mechanisms better than GWAS loci. However, existing TWAS/PWAS tools are limited by considering only one statistical model. We propose an omnibus PWAS pipeline to account for multiple statistical models and demonstrate improved performance by simulation and application studies of Alzheimer disease (AD) dementia. We employ the Aggregated Cauchy Association Test to derive omnibus PWAS (PWAS-O) p values from PWAS p values obtained by three existing tools assuming complementary statistical models-TIGAR, PrediXcan, and FUSION. Our simulation studies demonstrated improved power, with well-calibrated type I error, for PWAS-O over all three individual tools. We applied PWAS-O to studying AD dementia with reference proteomic data profiled from dorsolateral prefrontal cortex of postmortem brains from individuals of European ancestry. We identified 43 risk genes, including 5 not identified by previous studies, which are interconnected through a protein-protein interaction network that includes the well-known AD risk genes TOMM40, APOC1, and APOC2. We also validated causal genetic effects mediated through the proteome for 27 (63%) PWAS-O risk genes, providing insights into the underlying biological mechanisms of AD dementia and highlighting promising targets for therapeutic development. PWAS-O can be easily applied to studying other complex diseases.

13.
PLoS Biol ; 22(8): e3002723, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39172952

RESUMEN

The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in nonhuman species and recently demonstrated to occur in rare instances from one human generation to the next. Here, we investigated numtogenesis dynamics in humans in 2 ways. First, we quantified Numts in 1,187 postmortem brain and blood samples from different individuals. Compared to circulating immune cells (n = 389), postmitotic brain tissue (n = 798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples, we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex (DLPFC) compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, an increase in the number of brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment (NCI) who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures whole-genome sequencing design in a human fibroblast model that recapitulates several molecular hallmarks of aging. These longitudinal experiments revealed a gradual accumulation of 1 Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven by cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human postmitotic tissues produces functionally relevant human Numts over timescales shorter than previously assumed.


Asunto(s)
Encéfalo , ADN Mitocondrial , Fibroblastos , Humanos , ADN Mitocondrial/genética , Fibroblastos/metabolismo , Encéfalo/metabolismo , Masculino , Femenino , Núcleo Celular/metabolismo , Persona de Mediana Edad , Adulto , Anciano , Longevidad/genética , Envejecimiento/fisiología , Envejecimiento/genética
14.
Proc Natl Acad Sci U S A ; 121(27): e2317673121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889126

RESUMEN

Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.


Asunto(s)
Encéfalo , Mitocondrias , Fosforilación Oxidativa , Humanos , Mitocondrias/metabolismo , Masculino , Femenino , Encéfalo/metabolismo , Anciano , Estrés Psicológico/metabolismo , Persona de Mediana Edad , Corteza Prefrontal/metabolismo , Neuronas/metabolismo , Proteómica/métodos , Afecto/fisiología
15.
Physiol Rev ; 99(2): 1079-1151, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30672368

RESUMEN

Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.


Asunto(s)
Dolor Crónico/metabolismo , Umbral del Dolor , Células Receptoras Sensoriales/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Analgésicos/uso terapéutico , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Dolor Crónico/fisiopatología , Diseño de Fármacos , Humanos , Umbral del Dolor/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/genética
16.
Hum Mol Genet ; 33(15): 1315-1327, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38679805

RESUMEN

Late-Onset Alzheimer's Disease (LOAD) is a heterogeneous neurodegenerative disorder with complex etiology and high heritability. Its multifactorial risk profile and large portions of unexplained heritability suggest the involvement of yet unidentified genetic risk factors. Here we describe the "whole person" genetic risk landscape of polygenic risk scores for 2218 traits in 2044 elderly individuals and test if novel eigen-PRSs derived from clustered subnetworks of single-trait PRSs can improve the prediction of LOAD diagnosis, rates of cognitive decline, and canonical LOAD neuropathology. Network analyses revealed distinct clusters of PRSs with clinical and biological interpretability. Novel eigen-PRSs (ePRS) from these clusters significantly improved LOAD-related phenotypes prediction over current state-of-the-art LOAD PRS models. Notably, an ePRS representing clusters of traits related to cholesterol levels was able to improve variance explained in a model of the brain-wide beta-amyloid burden by 1.7% (likelihood ratio test P = 9.02 × 10-7). All associations of ePRS with LOAD phenotypes were eliminated by the removal of APOE-proximal loci. However, our association analysis identified modules characterized by PRSs of high cholesterol and LOAD. We believe this is due to the influence of the APOE region from both PRSs. We found significantly higher mean SNP effects for LOAD in the intersecting APOE region SNPs. Combining genetic risk factors for vascular traits and dementia could improve current single-trait PRS models of LOAD, enhancing the use of PRS in risk stratification. Our results are catalogued for the scientific community, to aid in generating new hypotheses based on our maps of clustered PRSs and associations with LOAD-related phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Puntuación de Riesgo Genético , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Apolipoproteínas E/genética , Disfunción Cognitiva/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple
17.
Hum Mol Genet ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39146503

RESUMEN

CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.

18.
Nature ; 583(7814): 96-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581362

RESUMEN

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino Unido
19.
J Neurosci ; 44(3)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38050142

RESUMEN

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Resiliencia Psicológica , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/metabolismo , Cognición , Neuronas/metabolismo , ARN , Empalme del ARN/genética , Proteínas tau/metabolismo
20.
Annu Rev Neurosci ; 40: 307-325, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441116

RESUMEN

Nerve growth factor (NGF) antagonism is on the verge of becoming a powerful analgesic treatment for numerous conditions, including osteoarthritis and lower back pain. This review summarizes the historical research, both fundamental and clinical, that led to our current understanding of NGF biology. We also discuss the surprising number of questions that remain about NGF expression patterns and NGF's various functions and interaction partners in relation to persistent pain and the potential side effects of anti-NGF therapy.


Asunto(s)
Factor de Crecimiento Nervioso/metabolismo , Dolor/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/metabolismo , Animales , Dolor Crónico/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA