Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405879

RESUMEN

The gradual loss of cerebral white matter contributes to cognitive decline during aging. However, microvascular networks that support the metabolic demands of white matter remain poorly defined. We used in vivo deep multi-photon imaging to characterize microvascular networks that perfuse cortical layer 6 and corpus callosum, a highly studied region of white matter in the mouse brain. We show that these deep tissues are exclusively drained by sparse and wide-reaching venules, termed principal cortical venules, which mirror vascular architecture at the human cortical-U fiber interface. During aging, capillary networks draining into deep branches of principal cortical venules are selectively constricted, reduced in density, and diminished in pericyte numbers. This causes hypo-perfusion in deep tissues, and correlates with gliosis and demyelination, whereas superficial tissues become relatively hyper-perfused. Thus, age-related impairment of capillary-venular drainage is a key vascular deficit that contributes to the unique vulnerability of cerebral white matter during brain aging.

2.
Nat Commun ; 15(1): 6398, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080289

RESUMEN

Aging is frequently associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods and in vivo imaging to determine detailed changes in aged murine cerebrovascular networks. Whole-brain vascular tracing shows an overall ~10% decrease in vascular length and branching density with ~7% increase in vascular radii in aged brains. Light sheet imaging with 3D immunolabeling reveals increased arteriole tortuosity of aged brains. Notably, vasculature and pericyte densities show selective and significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. We find increased blood extravasation, implying compromised blood-brain barrier function in aged brains. Moreover, in vivo imaging in awake mice demonstrates reduced baseline and on-demand blood oxygenation despite relatively intact neurovascular coupling. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.


Asunto(s)
Envejecimiento , Encéfalo , Circulación Cerebrovascular , Pericitos , Animales , Envejecimiento/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Ratones , Circulación Cerebrovascular/fisiología , Masculino , Pericitos/fisiología , Barrera Hematoencefálica/metabolismo , Ratones Endogámicos C57BL , Acoplamiento Neurovascular/fisiología , Remodelación Vascular/fisiología
3.
STAR Protoc ; 4(1): 102048, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36861829

RESUMEN

Here, we present a protocol using serial two-photon tomography (STPT) to quantitatively map genetically defined cell types and cerebrovasculature at single-cell resolution across the entire adult mouse brain. We describe the preparation of brain tissue and sample embedding for cell type and vascular STPT imaging and image processing using MATLAB codes. We detail the computational analyses for cell signal detection, vascular tracing, and three-dimensional image registration to anatomical atlases, which can be implemented for brain-wide mapping of different cell types. For complete details on the use and execution of this protocol, please refer to Wu et al. (2022),1 Son et al. (2022),2 Newmaster et al. (2020),3 Kim et al. (2017),4 and Ragan et al. (2012).5.


Asunto(s)
Mapeo Encefálico , Encéfalo , Animales , Ratones , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Fotones , Tomografía
4.
bioRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37305850

RESUMEN

Aging is the largest risk factor for neurodegenerative disorders, and commonly associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts the vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods (serial two-photon tomography and light sheet microscopy) and in vivo imaging (wide field optical spectroscopy and two-photon imaging) to determine detailed changes in aged cerebrovascular networks. Whole-brain vascular tracing showed an overall ~10% decrease in vascular length and branching density, and light sheet imaging with 3D immunolabeling revealed increased arteriole tortuosity in aged brains. Vasculature and pericyte densities showed significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. Moreover, in vivo imaging in awake mice identified delays in neurovascular coupling and disrupted blood oxygenation. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.

5.
Neurophotonics ; 9(2): 021902, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35402638

RESUMEN

Significance: The cerebrovasculature has become increasingly recognized as a major player in overall brain health and many brain disorders. Although there have been several landmark studies to understand details of these crucially important structures in an anatomically defined area, brain-wide examination of the whole cerebrovasculature, including microvessels, has been challenging. However, emerging techniques, including tissue processing and three-dimensional (3D) microscopy imaging, enable neuroscientists to examine the total vasculature in the entire mouse brain. Aim: Here, we aim to highlight advances in these high-resolution 3D mapping methods including block-face imaging and light sheet fluorescent microscopy. Approach: We summarize latest mapping tools to understand detailed anatomical arrangement of the cerebrovascular network and the organizing principles of the neurovascular unit (NVU) as a whole. Results: We discuss biological insights gained from studies using these imaging methods and how these tools can be used to advance our understanding of the cerebrovascular network and related cell types in the entire brain. Conclusions: This review article will help to understand recent advance in high-resolution NVU mapping in mice and provide perspective on future studies.

6.
Cell Rep ; 39(12): 110978, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35732133

RESUMEN

The cerebrovasculature and its mural cells must meet brain regional energy demands, but how their spatial relationship with different neuronal cell types varies across the brain remains largely unknown. Here we apply brain-wide mapping methods to comprehensively define the quantitative relationships between the cerebrovasculature, capillary pericytes, and glutamatergic and GABAergic neurons, including neuronal nitric oxide synthase-positive (nNOS+) neurons and their subtypes in adult mice. Our results show high densities of vasculature with high fluid conductance and capillary pericytes in primary motor sensory cortices compared with association cortices that show significant positive and negative correlations with energy-demanding parvalbumin+ and vasomotor nNOS+ neurons, respectively. Thalamo-striatal areas that are connected to primary motor sensory cortices also show high densities of vasculature and pericytes, suggesting dense energy support for motor sensory processing areas. Our cellular-resolution resource offers opportunities to examine spatial relationships between the cerebrovascular network and neuronal cell composition in largely understudied subcortical areas.


Asunto(s)
Neuronas GABAérgicas , Parvalbúminas , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Parvalbúminas/metabolismo , Pericitos/metabolismo
7.
Front Cell Neurosci ; 15: 627291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776651

RESUMEN

The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer's disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community's current understanding of pericytes' regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type's role in the normal brain and pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA