Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 204(4): 220, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333989

RESUMEN

Currently, consumption of spontaneously fermented milks is common in Algeria, making it a feasible source of diverse lactic acid bacteria (LAB) with the potential to be used as adjunct cultures to improve quality and safety of fermented dairy products. In this context, to select eligible indigenous strains which could be applied as bioprotective and/or starter cultures, the present study aimed to characterize the genomic variability, biotechnological potential, and safety of thirty-eight LAB isolated from Algerian dairy and farm sources of western Algeria. The isolates were unequivocally identified by 16S rRNA gene and fingerprint-based methods. The following species were identified: Enterococcus faecium (n = 15), Enterococcus durans (n = 2), Enterococcus hirae (n = 2), Enterococcus lactis (n = 1), Lactiplantibacillus plantarum (n = 6), Lactococcus lactis (n = 4), Levilactobacillus brevis (n = 3), Lacticaseibacillus paracasei (n = 3), Lacticaseibacillus rhamnosus (n = 1), and Pediococcus acidilactici (n = 1). Among the strains, three of them, L. lactis LGMY8, Lb. plantarum LGMY30 and Lb. paracasei LGMY31 were safe and showed some valuable biotechnological properties, such as high acidification, proteolytic activity, EPS production, and inhibition of undesirable bacteria that made them powerful candidates to be used as starter.


Asunto(s)
Lactobacillales , Argelia , Granjas , Microbiología de Alimentos , ARN Ribosómico 16S/genética
2.
BMC Genomics ; 22(1): 578, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315408

RESUMEN

BACKGROUND: Sahara is one of the largest deserts in the world. The harsh climatic conditions, especially high temperature and aridity lead to unique adaptation of organisms, which could be a potential source of new metabolites. In this respect, two Saharan soils from El Oued Souf and Beni Abbes in Algeria were collected. The bacterial isolates were selected by screening for antibacterial, antifungal, and enzymatic activities. The whole genomes of the two native Saharan strains were sequenced to study desert Streptomyces microbiology and ecology from a genomic perspective. RESULTS: Strains Babs14 (from Beni Abbes, Algeria) and Osf17 (from El Oued Souf, Algeria) were initially identified by 16S rRNA sequencing as belonging to the Streptomyces genus. The whole genome sequencing of the two strains was performed using Pacific Biosciences Sequel II technology (PacBio), which showed that Babs14 and Osf17 have a linear chromosome of 8.00 Mb and 7.97 Mb, respectively. The number of identified protein coding genes was 6910 in Babs14 and 6894 in Osf17. No plasmids were found in Babs14, whereas three plasmids were detected in Osf17. Although the strains have different phenotypes and are from different regions, they showed very high similarities at the DNA level. The two strains are more similar to each other than either is to the closest database strain. The search for potential secondary metabolites was performed using antiSMASH and predicted 29 biosynthetic gene clusters (BGCs). Several BGCs and proteins were related to the biosynthesis of factors needed in response to environmental stress in temperature, UV light and osmolarity. CONCLUSION: The genome sequencing of Saharan Streptomyces strains revealed factors that are related to their adaptation to an extreme environment and stress conditions. The genome information provides tools to study ecological adaptation in a desert environment and to explore the bioactive compounds of these microorganisms. The two whole genome sequences are among the first to be sequenced for the Streptomyces genus of Algerian Sahara. The present research was undertaken as a first step to more profoundly explore the desert microbiome.


Asunto(s)
Streptomyces , África del Norte , Genoma Bacteriano , Filogenia , ARN Ribosómico 16S/genética , Arena , Streptomyces/genética , Secuenciación Completa del Genoma
3.
Antonie Van Leeuwenhoek ; 114(4): 411-424, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33587226

RESUMEN

A novel bacterial strain was isolated from industrially contaminated waste water. In the presence of crude oil, this strain was shown to reduce the rate of total petroleum hydrocarbons (TPH) up to 97.10% in 24 h. This bacterium was subsequently identified by 16S rRNA gene sequence analysis and affiliated to the Serratia genus by the RDP classifier. Its genome was sequenced and annotated, and genes coding for catechol 1,2 dioxygenase and naphthalene 1,2-dioxygenase system involved in aromatic hydrocarbon catabolism, and LadA-type monooxygenases involved in alkane degradation, were identified. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of crude oil after biological treatment showed that Serratia sp. Tan611 strain was able to degrade n-alkanes (from C13 to C25). This bacterium was also shown to produce a biosurfactant, the emulsification index (E24) reaching 43.47% and 65.22%, against vegetable and crude oil, respectively. Finally, the formation of a biofilm was increased in the presence of crude oil. These observations make Serratia sp. Tan611 a good candidate for hydrocarbon bioremediation.


Asunto(s)
Petróleo , Serratia , Argelia , Biodegradación Ambiental , Biopelículas , Hidrocarburos , ARN Ribosómico 16S/genética , Serratia/genética
4.
3 Biotech ; 11(4): 200, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33927990

RESUMEN

This study aims to isolate and characterize a novel rhamnolipid producer within the recent bioremediation approaches for treating hydrocarbon-contaminated soils in Algeria. In this context, from a hydrocarbon-contaminated soil, a newly bacterium designated LGMS7 was screened and identified, belonged to the Pseudomonas genus, and was closely related to Pseudomonas mucidolens, with a 16S rRNA sequence similarity of 99.05%. This strain was found to use different hydrocarbons and oils as a sole carbon and energy source for growth. It showed a stable emulsification index E24 (%) of 66.66% ± 3.46 when growing in mineral salts medium (MSM) supplemented with 2% (v/v) glycerol after incubation for 6 days at 30 °C. Interestingly, it was also able to reduce the surface tension of the cell-free supernatant to around 30 ± 0.65 mN m-1 with a critical micelle concentration (CMC) of 800 mg l-1. It was found to be able to produce around 1260 ± 0.57 mg l-1 as the yield of rhamnolipid production. Its biosurfactant has demonstrated excellent stability against pH (pH 2.0-12.0), salinity (0-150 g l-1), and temperature (-20 to 121 °C). Based on various chromatographic and spectroscopic techniques (i.e., TLC, FTIR, 1H-NMR), it was found to belong to the glycolipid class (i.e., rhamnolipids). Taken altogether, the strain LGMS7 and its biosurfactant display interesting biotechnological capabilities for the bioremediation of hydrocarbon-contaminated sites. To the best of our knowledge, this is the first study that described the production of biosurfactants by Pseudomonas mucidolens species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02751-6.

5.
Food Sci Technol Int ; 27(3): 223-233, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32727210

RESUMEN

Bacteria from the genus Lactobacillus are responsible for spontaneous food fermentations. Some species, such as Lactobacillus casei and Lactobacillus brevis, have the "Qualified Presumption of Safety" status recognized by the European Food Safety Authority. Several of their strains are used as probiotics in foods and sometimes are included in synbiotic combinations together with prebiotics. New microbial strains isolated from different sources represent an opportunity to use them for the production of traditional food products. The capacity of three selected strains (one isolated from Camel's milk and identified by partial 16 S rRNA gene sequencing as L. brevis, and two isolated from human colostrum and identified as L. paracasei/L. casei and L. brevis, respectively) was assessed in vitro for the ability to survive in gastrointestinal conditions (low pH and high bile salts concentrations). We also tested the capacity of growth and the production of organic acids and volatile compounds by high-performance liquid chromatography and gas chromatography, respectively, when these bacteria were incubated anaerobically in the presence of inulin, fructooligosaccharides, or galactooligosaccharides as the main carbon sources. The strains were able to survive in simulated gastrointestinal conditions and to grow in inulin, fructooligosaccharides, and galactooligosaccharides. However, they displayed different profiles of organic acids and volatile compounds, mainly depending on the microbial species and the prebiotic used. The influence that the combined use of strains and different prebiotics could exert on the organic acids and volatiles formed in food and in the gut should be assessed for each synbiotic combination and food product.


Asunto(s)
Calostro , Fructanos/farmacología , Inulina , Lactobacillus , Leche , Oligosacáridos , Probióticos , Argelia , Animales , Camelus , Calostro/microbiología , Femenino , Galactosa/química , Galactosa/farmacología , Humanos , Inulina/farmacología , Lactobacillus/efectos de los fármacos , Leche/microbiología , Oligosacáridos/farmacología , Embarazo
6.
Curr Microbiol ; 59(2): 139-46, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19484304

RESUMEN

Lactic acid bacteria (LAB) are widely used in food industry and their growth performance is important for the quality of the fermented product. By combining results from conventional isolation methods and molecular investigation of 16S rRNA gene and lactococcal/enterococcal specific genes, we identify at species level catalase negative gram positive thermoresistant cocci isolated from traditional 'leben', a 24-h fermented milk in arid area of west Algeria. Forty strains phenotypically related to cocci LAB were identified as belonging to the species Lactococcus lactis ssp. lactis, Enterococcus faecalis, Enterococcus faecium, and other Enterococcus species. No Streptococcus thermophilus strain was isolated. Ten different phenotype groups were recognized, and the species content of these groups were in some cases different from the expected features usually given in genus and species descriptions. In particular, atypical lactococci, able to grow in 6.5% NaCl, at pH 9.5 and showing high resistance to thermal stresses were isolated. Lactococci, but also enterococci isolated from traditional 'leben' produced in the desert area, may be therefore of interest in milk fermentation. Further studies to assess this source of diversity within the wild microbial population should provide starter new strains for product innovation.


Asunto(s)
ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Microbiología de Alimentos , Cocos Grampositivos/clasificación , Cocos Grampositivos/aislamiento & purificación , Argelia , Análisis por Conglomerados , ADN Bacteriano/química , ADN Ribosómico/química , ADN Ribosómico/genética , Cocos Grampositivos/citología , Cocos Grampositivos/genética , Lactococcus lactis/clasificación , Lactococcus lactis/citología , Lactococcus lactis/genética , Lactococcus lactis/aislamiento & purificación , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA