RESUMEN
The transcription factor HIF1A is a key mediator of the cellular response to hypoxia. Despite the importance of HIF1A in homeostasis and various pathologies, little is known about how it regulates RNA polymerase II (RNAPII). We report here that HIF1A employs a specific variant of the Mediator complex to stimulate RNAPII elongation. The Mediator-associated kinase CDK8, but not the paralog CDK19, is required for induction of many HIF1A target genes. HIF1A induces binding of CDK8-Mediator and the super elongation complex (SEC), containing AFF4 and CDK9, to alleviate RNAPII pausing. CDK8 is dispensable for HIF1A chromatin binding and histone acetylation, but it is essential for binding of SEC and RNAPII elongation. Global analysis of active RNAPII reveals that hypoxia-inducible genes are paused and active prior to their induction. Our results provide a mechanistic link between HIF1A and CDK8, two potent oncogenes, in the cellular response to hypoxia.
Asunto(s)
Hipoxia de la Célula , Quinasa 8 Dependiente de Ciclina/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Complejo Mediador/metabolismo , Neoplasias/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Acetilación , Línea Celular Tumoral , Quinasa 8 Dependiente de Ciclina/química , Quinasas Ciclina-Dependientes/metabolismo , Células HeLa , Histonas/metabolismo , HumanosRESUMEN
ΔNp63α is a member of the p53 family of transcription factors that functions as an oncogene in squamous cell carcinomas (SCCs). Because ΔNp63α and p53 bind virtually identical DNA sequence motifs, it has been proposed that ΔNp63α functions as a dominant-negative inhibitor of p53 to promote proliferation and block apoptosis. However, most SCCs concurrently overexpress ΔNp63α and inactivate p53, suggesting the autonomous action of these oncogenic events. Here we report the discovery of a novel mechanism of transcriptional repression by ΔNp63α that reconciles these observations. We found that although both proteins bind the same genomic sites, they regulate largely nonoverlapping gene sets. Upon activation, p53 binds all enhancers regardless of ΔNp63α status but fails to transactivate genes repressed by ΔNp63α. We found that ΔNp63α associates with the SRCAP chromatin regulatory complex involved in H2A/H2A.Z exchange and mediates H2A.Z deposition at its target loci. Interestingly, knockdown of SRCAP subunits or H2A.Z leads to specific induction of ΔNp63α-repressed genes. We identified SAMD9L as a key anti-proliferative gene repressed by ΔNp63α and H2A.Z whose depletion suffices to reverse the arrest phenotype caused by ΔNp63α knockdown. Collectively, these results illuminate a molecular pathway contributing to the autonomous oncogenic effects of ΔNp63α.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular , Elementos de Facilitación Genéticos , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Unión Proteica , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
Brown adipose tissue (BAT) is composed of thermogenic cells that convert chemical energy into heat to maintain a constant body temperature and counteract metabolic disease. The metabolic adaptations required for thermogenesis are not fully understood. Here, we explore how steady state levels of metabolic intermediates are altered in brown adipose tissue in response to cold exposure. Transcriptome and metabolome analysis revealed changes in pathways involved in amino acid, glucose, and TCA cycle metabolism. Using isotopic labeling experiments, we found that activated brown adipocytes increased labeling of pyruvate and TCA cycle intermediates from U13C-glucose. Although glucose oxidation has been implicated as being essential for thermogenesis, its requirement for efficient thermogenesis has not been directly tested. We show that mitochondrial pyruvate uptake is essential for optimal thermogenesis, as conditional deletion of Mpc1 in brown adipocytes leads to impaired cold adaptation. Isotopic labeling experiments using U13C-glucose showed that loss of MPC1 led to impaired labeling of TCA cycle intermediates. Loss of MPC1 in BAT increased 3-hydroxybutyrate levels in blood and BAT in response to the cold, suggesting that ketogenesis provides an alternative fuel source to compensate. Collectively, these studies highlight that complete glucose oxidation is essential for optimal brown fat thermogenesis.
Asunto(s)
Tejido Adiposo Pardo/fisiología , Proteínas de Transporte de Anión/genética , Frío , Glucosa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Transportadores de Ácidos Monocarboxílicos/genética , Termogénesis , Adipocitos Marrones/metabolismo , Animales , Proteínas de Transporte de Anión/metabolismo , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Oxidación-Reducción , Suero/químicaRESUMEN
Cells harbor two systems for fatty acid synthesis, one in the cytoplasm (catalyzed by fatty acid synthase, FASN) and one in the mitochondria (mtFAS). In contrast to FASN, mtFAS is poorly characterized, especially in higher eukaryotes, with the major product(s), metabolic roles, and cellular function(s) being essentially unknown. Here we show that hypomorphic mtFAS mutant mouse skeletal myoblast cell lines display a severe loss of electron transport chain (ETC) complexes and exhibit compensatory metabolic activities including reductive carboxylation. This effect on ETC complexes appears to be independent of protein lipoylation, the best characterized function of mtFAS, as mutants lacking lipoylation have an intact ETC. Finally, mtFAS impairment blocks the differentiation of skeletal myoblasts in vitro. Together, these data suggest that ETC activity in mammals is profoundly controlled by mtFAS function, thereby connecting anabolic fatty acid synthesis with the oxidation of carbon fuels.
In human, plant and other eukaryotic cells, fats are an important source of energy and also play many other roles including waterproofing, thermal insulation and energy storage. Eukaryotic cells have two systems that make the building blocks of fats (known as fatty acids) and one of these systems, called the mtFAS pathway, operates in small compartments known as mitochondria. This pathway only has one known product, a small fat molecule called lipoic acid, which mitochondria attach to several enzymes to allow them to work properly. The main role of mitochondria is to break down fats and other molecules to release chemical energy that powers many processes in cells. They achieve this using large groups of proteins known as ETC complexes. To build these complexes, families of proteins known as ETC assembly factors carefully coordinate the assembly of many proteins and small molecules into specific structures. However, it remains unclear precisely how this process works. Here, Nowinski et al. used a gene editing technique to mutate the genes encoding three enzymes in the mtFAS pathway in mammalian cells. The experiments found that the mutant cells had fewer ETC complexes and seemed to be less able to break down fats and other molecules than 'normal' cells. Furthermore, a family of ETC assembly factors were less stable in the mutant cells. These findings suggest that the mtFAS pathway controls how mitochondria assemble ETC complexes. Further experiments indicated that lipoic acid is not involved in the assembly of ETC complexes and that the mtFAS pathway produces another, as yet unidentified, product that regulates this process, instead. MEPAN syndrome is a rare neurological disorder that leads to progressive loss of control of movement, slurred speech and impaired vision in children. Patients with this syndrome have genetic mutations affecting components of the mtFAS pathway, therefore, a better understanding of how the pathway works may help researchers develop new treatments in the future. More broadly, these findings will have important ramifications for many other situations in which the activity of ETC complexes in mitochondria is modified.
Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ácidos Grasos/biosíntesis , Mitocondrias/metabolismo , Mioblastos/fisiología , Animales , Diferenciación Celular , Línea Celular , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Células HEK293 , Humanos , Lipoilación/genética , Ratones , Oxidación-ReducciónRESUMEN
Although metabolic adaptations have been demonstrated to be essential for tumor cell proliferation, the metabolic underpinnings of tumor initiation are poorly understood. We found that the earliest stages of colorectal cancer (CRC) initiation are marked by a glycolytic metabolic signature, including downregulation of the mitochondrial pyruvate carrier (MPC), which couples glycolysis and glucose oxidation through mitochondrial pyruvate import. Genetic studies in Drosophila suggest that this downregulation is required because hyperplasia caused by loss of the Apc or Notch tumor suppressors in intestinal stem cells can be completely blocked by MPC overexpression. Moreover, in two distinct CRC mouse models, loss of Mpc1 prior to a tumorigenic stimulus doubled the frequency of adenoma formation and produced higher grade tumors. MPC loss was associated with a glycolytic metabolic phenotype and increased expression of stem cell markers. These data suggest that changes in cellular pyruvate metabolism are necessary and sufficient to promote cancer initiation.
Asunto(s)
Adenoma/metabolismo , Carcinogénesis/metabolismo , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ácido Pirúvico/metabolismo , Animales , Transformación Celular Neoplásica/metabolismo , Drosophila , Femenino , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Cold-induced thermogenesis is an energy-demanding process that protects endotherms against a reduction in ambient temperature. Using non-targeted liquid chromatography-mass spectrometry-based lipidomics, we identified elevated levels of plasma acylcarnitines in response to the cold. We found that the liver undergoes a metabolic switch to provide fuel for brown fat thermogenesis by producing acylcarnitines. Cold stimulates white adipocytes to release free fatty acids that activate the nuclear receptor HNF4α, which is required for acylcarnitine production in the liver and adaptive thermogenesis. Once in circulation, acylcarnitines are transported to brown adipose tissue, while uptake into white adipose tissue and liver is blocked. Finally, a bolus of L-carnitine or palmitoylcarnitine rescues the cold sensitivity seen with aging. Our data highlight an elegant mechanism whereby white adipose tissue provides long-chain fatty acids for hepatic carnitilation to generate plasma acylcarnitines as a fuel source for peripheral tissues in mice.