Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Am Chem Soc ; 144(31): 14363-14379, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35913703

RESUMEN

In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-ß (Aß) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.


Asunto(s)
Péptidos beta-Amiloides , Hidrocarburos Aromáticos con Puentes , Amiloide , Péptidos beta-Amiloides/química , Hidrocarburos Aromáticos con Puentes/química , Femenino , Colorantes Fluorescentes/química , Compuestos Heterocíclicos con 2 Anillos , Humanos , Imidazoles/química , Imidazolidinas , Compuestos Macrocíclicos , Embarazo
2.
Macromol Rapid Commun ; 43(12): e2100473, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34505725

RESUMEN

The combination of complementary, noncovalent interactions is a key principle for the design of multistimuli responsive hydrogels. In this work, an amphiphilic peptide, supramacromolecular hydrogelator which combines metal-ligand coordination induced gelation and thermoresponsive toughening is reported. Following a modular approach, the incorporation of the triphenylalanine sequence FFF into a structural (C3 EG ) and a terpyridine-functionalized (C3 Tpy ) C3 -symmetric monomer enables their statistical copolymerization into self-assembled, 1D nanorods in water, as investigated by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). In the presence of a terpyridine functionalized telechelic polyethylene glycol (PEG) cross-linker, complex formation upon addition of different transition metal ions (Fe2+ , Zn2+ , Ni2+ ) induces the formation of soft, reversible hydrogels at a solid weight content of 1 wt% as observed by linear shear rheology. The viscoelastic behavior of Fe2+ and Zn2+ cross-linked hydrogels are basically identical, while the most kinetically inert Ni2+ coordinative bond leads to significantly weaker hydrogels, suggesting that the most dynamic rather than the most thermodynamically stable interaction supports the formation of robust and responsive hydrogel materials.


Asunto(s)
Hidrogeles , Polietilenglicoles , Hidrogeles/química , Iones , Metales , Péptidos/química , Polietilenglicoles/química
3.
Macromol Rapid Commun ; 41(1): e1900476, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31682046

RESUMEN

A multistimuli-responsive supramolecular copolymerization is reported. The copolymerization is driven by hydrogen bond encoded ß-sheet-based charge co-assembly into 1D nanorods in water, using glutamic acid or lysine residues in either of the peptide comonomers. The incorporation of methionine as hydrophobic amino acid supports ß-sheet formation, but oxidation of the thioether side-chain to a sulfoxide functional group destabilizes the ß-sheet ordered domains and induces disassembly of the supramolecular polymers. Using H2 O2 as reactive oxygen species, the time scale and kinetics of the oxidative disassembly are probed. Compared to the charge neutral homopolymers, it is found that the oxidative disassembly of the charged ampholytic copolymers is up to two times faster and is operative at neutral pH. The strategy is therefore an important addition to the growing field of amphiphilic polythioether containing (macro)molecular building blocks, particularly in view of tuning their oxidation induced disassembly which tends to be notoriously slow and requires high concentrations of reactive oxygen species or acidic reaction media.


Asunto(s)
Sustancias Macromoleculares/química , Polímeros/química , Aminoácidos/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Nanotubos/química , Oxidación-Reducción , Péptidos/química , Conformación Proteica en Lámina beta , Especies Reactivas de Oxígeno/química
4.
J Chem Phys ; 151(1): 014902, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31272178

RESUMEN

We investigate the copolymerization behavior of a two-component system into quasilinear self-assemblies under conditions that interspecies binding is favored over identical species binding. The theoretical framework is based on a coarse-grained self-assembled Ising model with nearest neighbor interactions. In Ising language, such conditions correspond to the antiferromagnetic case giving rise to copolymers with predominantly alternating configurations. In the strong coupling limit, we show that the maximum fraction of polymerized material and the average length of strictly alternating copolymers depend on the stoichiometric ratio and the activation free energy of the more abundant species. They are substantially reduced when the stoichiometric ratio noticeably differs from unity. Moreover, for stoichiometric ratios close to unity, the copolymerization critical concentration is remarkably lower than the homopolymerization critical concentration of either species. We further analyze the polymerization behavior for a finite and negative coupling constant and characterize the composition of supramolecular copolymers. Our theoretical insights rationalize experimental results of supramolecular polymerization of oppositely charged monomeric species in aqueous solutions.

5.
Macromol Rapid Commun ; 39(17): e1800459, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30040152

RESUMEN

The synthesis of ABA and ABA' triblock polyethylene glycol-and polysarcosine-peptide conjugates is reported. The A/A' peptides are based on phenylalanine(F)-histidine(H) pentapeptide sequences FHFHF, which promote pH-switchable ß-sheet self-assembly into nanorods in water. Only parallel ß-sheet-driven folding and intermolecular assembly using ABA triblock polymer-peptide conjugates leads to interstrand cross-linking and hydrogelation, highlighting the impact of supramolecular interactions-directed structure formation at the nano- and mesoscopic level.


Asunto(s)
Hidrogeles/química , Péptidos/química , Polímeros/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
6.
Nucleic Acids Res ; 44(22): 10727-10743, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27694624

RESUMEN

A coordinated and faithful DNA damage response is of central importance for maintaining genomic integrity and survival. Here, we show that exposure of human cells to benzo(a)pyrene 9,10-diol-7,8-epoxide (BPDE), the active metabolite of benzo(a)pyrene (B(a)P), which represents a most important carcinogen formed during food preparation at high temperature, smoking and by incomplete combustion processes, causes a prompt and sustained upregulation of the DNA repair genes DDB2, XPC, XPF, XPG and POLH. Induction of these repair factors on RNA and protein level enhanced the removal of BPDE adducts from DNA and protected cells against subsequent BPDE exposure. However, through the induction of POLH the mutation frequency in the surviving cells was enhanced. Activation of these adaptive DNA repair genes was also observed upon B(a)P treatment of MCF7 cells and in buccal cells of human volunteers after cigarette smoking. Our data provide a rational basis for an adaptive response to polycyclic aromatic hydrocarbons, which occurs however at the expense of mutations that may drive cancer formation.


Asunto(s)
Apoptosis , Reparación del ADN , Activación Transcripcional , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/farmacología , Supervivencia Celular , Aductos de ADN/genética , Aductos de ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Retroalimentación Fisiológica , Humanos , Células MCF-7 , Mutágenos/farmacología , Factor de Transcripción AP-1/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
7.
ChemistryOpen ; 9(3): 346-350, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195075

RESUMEN

The pH-responsive nature of two self-assembled NDI-peptide amphiphile conjugates is reported. The diethoxy substituted NDI showed a pH-dependent assembly behaviour, as expected. In contrast, the isopropylamino- and ethoxy-substituted NDI based supramolecular polymer was stable at acidic and basic aqueous conditions. This finding highlights how subtle changes in the molecular design of π-stacked chromophore-peptide conjugates have a drastic impact on their equilibrium structure and ultimately functional properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA