Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991538

RESUMEN

Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals where it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologs. Using RNA-sequencing, we show how 5' splice site usage is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 bp region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide.

2.
Am J Hum Genet ; 110(8): 1229-1248, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541186

RESUMEN

Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders.


Asunto(s)
Exoma , Pruebas Genéticas , Humanos , Exoma/genética , Análisis de Secuencia de ADN , Fenotipo , Secuenciación del Exoma , Enfermedades Raras
3.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051358

RESUMEN

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Asunto(s)
Proteína BRCA1/genética , Mutación de Línea Germinal , Mutación con Pérdida de Función , Mutación Missense , Trastornos del Neurodesarrollo/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Adolescente , Proteína BRCA1/inmunología , Niño , Preescolar , Cromatina/química , Cromatina/inmunología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/inmunología , Familia , Femenino , Regulación de la Expresión Génica , Heterocigoto , Histonas/genética , Histonas/inmunología , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/inmunología , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/patología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Linfocitos T/inmunología , Linfocitos T/patología , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/inmunología , Ubiquitina/genética , Ubiquitina/inmunología , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Ubiquitinación
4.
Genet Med ; : 101199, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38944749

RESUMEN

Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.

5.
Am J Med Genet A ; 194(5): e63494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38156365

RESUMEN

RASopathies are a group of malformation syndromes known to lead to nonimmune hydrops fetalis (NIHF) in severe presentations. Pathogenic variants can be de novo or parentally inherited. Despite being a known frequent presentation, the fraction of monogenic NIHF cases due to RASopathies is limited in the literature. Also, the specific parental contribution of RASopathies to NIHF is not well described. Our objective was to review pooled exome sequencing (ES) diagnostic yield of RASopathies for NIHF and to determine the parental contribution of RASopathy to NIHF. We performed a systematic review of prenatal ES studies from January 1, 2000 to August 1, 2022. Thirty-six studies met inclusion criteria. Cases with RASopathy gene variants were reviewed. NIHF cases were further classified as isolated or non-isolated. Thirty-six ES studies including 46 pregnancies with NIHF and a diagnosed RASopathy were reviewed. Forty-four diagnostic variants and 2 variants of uncertain significance in 12 RASopathy genes were identified. Expanding on what was previously published, a total of 506 NIHF cases were extracted with 191 cases yielding a positive diagnosis by ES. The overall rate of RASopathy diagnosis in clinically diagnosed NIHF cases was 9% (44/506). The rate of RASopathy diagnosis among NIHF cases with positive genetic diagnosis by ES was 23% (44/191). Of the 46 cases identified, 13 (28%) variants were parentally inherited; specifically, 5/13 (38%) maternal, 3/13 (23%) paternal, 2/13 (15%) biparental, and 3/13 (23%) unspecified. Majority of NIHF cases 29/46 (63%) were isolated. Among NIHF cases with positive ES diagnoses, RASopathy diagnostic yield by ES was 23%. NIHF secondary to RASopathies was parentally inherited in 28% of cases. Most cases of NIHF due to RASopathy were isolated, with no prenatal detection of associated anomalies.


Asunto(s)
Padre , Hidropesía Fetal , Embarazo , Masculino , Femenino , Humanos , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Secuenciación del Exoma
6.
Am J Hum Genet ; 107(3): 564-574, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32822602

RESUMEN

KAT5 encodes an essential lysine acetyltransferase, previously called TIP60, which is involved in regulating gene expression, DNA repair, chromatin remodeling, apoptosis, and cell proliferation; but it remains unclear whether variants in this gene cause a genetic disease. Here, we study three individuals with heterozygous de novo missense variants in KAT5 that affect normally invariant residues, with one at the chromodomain (p.Arg53His) and two at or near the acetyl-CoA binding site (p.Cys369Ser and p.Ser413Ala). All three individuals have cerebral malformations, seizures, global developmental delay or intellectual disability, and severe sleep disturbance. Progressive cerebellar atrophy was also noted. Histone acetylation assays with purified variant KAT5 demonstrated that the variants decrease or abolish the ability of the resulting NuA4/TIP60 multi-subunit complexes to acetylate the histone H4 tail in chromatin. Transcriptomic analysis in affected individual fibroblasts showed deregulation of multiple genes that control development. Moreover, there was also upregulated expression of PER1 (a key gene involved in circadian control) in agreement with sleep anomalies in all of the individuals. In conclusion, dominant missense KAT5 variants cause histone acetylation deficiency with transcriptional dysregulation of multiples genes, thereby leading to a neurodevelopmental syndrome with sleep disturbance, cerebellar atrophy, and facial dysmorphisms, and suggesting a recognizable syndrome.


Asunto(s)
Atrofia/genética , Enfermedades Cerebelosas/genética , Discapacidad Intelectual/genética , Lisina Acetiltransferasa 5/genética , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Atrofia/diagnóstico por imagen , Atrofia/fisiopatología , Enfermedades Cerebelosas/diagnóstico por imagen , Enfermedades Cerebelosas/fisiopatología , Preescolar , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Reparación del ADN/genética , Epilepsia/diagnóstico por imagen , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Heterocigoto , Histonas/genética , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/fisiopatología , Masculino , Mutación Missense/genética , Procesamiento Proteico-Postraduccional/genética
7.
Am J Hum Genet ; 106(1): 121-128, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883643

RESUMEN

In two independent ongoing next-generation sequencing projects for individuals with holoprosencephaly and individuals with disorders of sex development, and through international research collaboration, we identified twelve individuals with de novo loss-of-function (LoF) variants in protein phosphatase 1, regulatory subunit 12a (PPP1R12A), an important developmental gene involved in cell migration, adhesion, and morphogenesis. This gene has not been previously reported in association with human disease, and it has intolerance to LoF as illustrated by a very low observed-to-expected ratio of LoF variants in gnomAD. Of the twelve individuals, midline brain malformations were found in five, urogenital anomalies in nine, and a combination of both phenotypes in two. Other congenital anomalies identified included omphalocele, jejunal, and ileal atresia with aberrant mesenteric blood supply, and syndactyly. Six individuals had stop gain variants, five had a deletion or duplication resulting in a frameshift, and one had a canonical splice acceptor site loss. Murine and human in situ hybridization and immunostaining revealed PPP1R12A expression in the prosencephalic neural folds and protein localization in the lower urinary tract at critical periods for forebrain division and urogenital development. Based on these clinical and molecular findings, we propose the association of PPP1R12A pathogenic variants with a congenital malformations syndrome affecting the embryogenesis of the brain and genitourinary systems and including disorders of sex development.


Asunto(s)
Anomalías Múltiples/patología , Trastornos del Desarrollo Sexual/patología , Holoprosencefalia/patología , Mutación , Fosfatasa de Miosina de Cadena Ligera/genética , Anomalías Urogenitales/patología , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Trastornos del Desarrollo Sexual/genética , Femenino , Edad Gestacional , Holoprosencefalia/genética , Humanos , Masculino , Fenotipo , Embarazo , Anomalías Urogenitales/genética
8.
Clin Genet ; 103(5): 503-512, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36757664

RESUMEN

Non-immune hydrops fetalis (NIHF) has multiple genetic etiologies diagnosable by exome sequencing (ES). We evaluated the yield of prenatal ES for NIHF, and the contribution of additional clinical findings and history. Systematic review was performed with PROSPERO tag 232951 using CINAHL, PubMed, and Ovid MEDLINE from January 1, 2000 through December 1, 2021. Selected studies performed ES to augment standard prenatal diagnostic approaches. Cases meeting a strict NIHF phenotype were tabulated with structured data imputed from papers or requested from authors. Genetic variants and diagnostic outcomes were harmonized across studies using current ACMG and ClinGen variant classification guidelines. Thirty-one studies reporting 445 NIHF cases had a 37% (95% CI: 32%-41%) diagnostic rate. There was no significant difference between isolated NIHF and NIHF with fetal malformations or between recurrent and simplex cases. Diagnostic rate was higher for consanguineous than non-consanguineous cases. Disease categories included RASopathies (24%), neuromuscular (21%), metabolic (17%), lymphatic (13%), other syndromes (9%), cardiovascular (5%), hematologic (2%), skeletal (2%), and other categories (7%). Inheritance patterns included recessive (55%), dominant (41%), and X-linked (4%). ES should be considered in the diagnostic workup of NIHF with and without associated ultrasound findings regardless of history of recurrence or consanguinity.


Asunto(s)
Hidropesía Fetal , Embarazo , Femenino , Humanos , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Secuenciación del Exoma , Consanguinidad
9.
Clin Genet ; 104(3): 377-383, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37194472

RESUMEN

We evaluated the diagnostic yield using genome-slice panel reanalysis in the clinical setting using an automated phenotype/gene ranking system. We analyzed whole genome sequencing (WGS) data produced from clinically ordered panels built as bioinformatic slices for 16 clinically diverse, undiagnosed cases referred to the Pediatric Mendelian Genomics Research Center, an NHGRI-funded GREGoR Consortium site. Genome-wide reanalysis was performed using Moon™, a machine-learning-based tool for variant prioritization. In five out of 16 cases, we discovered a potentially clinically significant variant. In four of these cases, the variant was found in a gene not included in the original panel due to phenotypic expansion of a disorder or incomplete initial phenotyping of the patient. In the fifth case, the gene containing the variant was included in the original panel, but being a complex structural rearrangement with intronic breakpoints outside the clinically analyzed regions, it was not initially identified. Automated genome-wide reanalysis of clinical WGS data generated during targeted panels testing yielded a 25% increase in diagnostic findings and a possibly clinically relevant finding in one additional case, underscoring the added value of analyses versus those routinely performed in the clinical setting.


Asunto(s)
Biología Computacional , Genómica , Humanos , Secuenciación Completa del Genoma , Fenotipo , Intrones
10.
Prenat Diagn ; 43(12): 1556-1566, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37902181

RESUMEN

OBJECTIVE: To clarify the relevance of PIEZO1 variants detected by prenatal exome in the context of non-immune hydrops fetalis (NIHF). METHODS: A systematic review of prenatal exome studies from 1/1/2000-8/1/2022 was performed. Thirty-six studies met the inclusion criteria. PIEZO1 variants were categorized by disease mode (dominant (AD) versus recessive (AR)) and classified by the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: Twenty-two pregnancies with 35 distinct PIEZO1 variants were included. We deemed PIEZO1 variants to be "likely diagnostic" in 12/22 pregnancies, "possibly diagnostic" in 7/22, and "unlikely diagnostic" in 3/22. In total, 19 of 191 NIHF cases diagnosed by prenatal exome were attributed to PIEZO1. Among likely diagnosed cases, the disease mode was AR in eight and AD in four. PIEZO1 variants causing AR NIHF were characterized by loss of function and isolated NIHF phenotype. PIEZO1 variants causing AD NIHF were characterized by gain of function in red blood cells, scarcity in databases, and sporadic inheritance. Missense variants associated with NIHF were clustered in three domains: transmembrane helical unit 4 (THU4), THU5, and the Cap. CONCLUSION: PIEZO1 variants were reported in 10% of NIHF cases diagnosed by prenatal exome, making PIEZO1 the most common single gene reported in NIHF.


Asunto(s)
Genómica , Hidropesía Fetal , Embarazo , Femenino , Humanos , Hidropesía Fetal/diagnóstico , Secuenciación del Exoma , Canales Iónicos/genética
11.
Am J Hum Genet ; 104(5): 990-993, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006510

RESUMEN

Holoprosencephaly is the incomplete separation of the forebrain during embryogenesis. Both genetic and environmental etiologies have been determined for holoprosencephaly; however, a genetic etiology is not found in most cases. In this report, we present two unrelated individuals with semilobar holoprosencephaly who have the identical de novo missense variant in the gene CCR4-NOT transcription complex, subunit 1 (CNOT1). The variant (c.1603C>T [p.Arg535Cys]) is predicted to be deleterious and is not present in public databases. CNOT1 has not been previously associated with holoprosencephaly or other brain malformations. In situ hybridization analyses of mouse embryos show that Cnot1 is expressed in the prosencephalic neural folds at gestational day 8.25 during the critical period for subsequent forebrain division. Combining human and mouse data, we show that CNOT1 is associated with incomplete forebrain division.


Asunto(s)
Holoprosencefalia/genética , Holoprosencefalia/patología , Mutación Missense , Prosencéfalo/anomalías , Factores de Transcripción/genética , Animales , Niño , Femenino , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Prosencéfalo/metabolismo
12.
Mol Genet Metab ; 137(1-2): 140-145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36029725

RESUMEN

OBJECTIVE: Pharmacogenomics (PGx) characterizes genetic variation in medication response. 85-95% of the population carries actionable PGx variants. No prior studies have demonstrated the application and feasibility of PGx in prenatal testing. We assessed parental desire for PGx findings from fetal exome sequencing (ES), evaluated PGx variants, and reviewed implications for medically complex neonates. METHODS: A prospective cohort undergoing ES for nonimmune hydrops fetalis were offered PGx results as a secondary finding. Seven pharmacogenes with Level A evidence, defined by Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines, were tested and reported to patients and referring providers. Medication administration records were reviewed. RESULTS: Most participants (36/40, 90%) desired PGx testing. 32/36 (89%) had potentially actionable PGx diplotypes in six genes: CYP2C19 (20/36, 56%), CYP2C9 (16/36, 44%), CYP2D6 (10/36, 28%), SLCO1B1 (13/36, 36%), TPMT (6/36, 17%), UGT1A1 (4/36, 11%). 12/13 (92%) live births had PGx variants. Neonatal chart review indicated that three medications with CPIC Level A evidence were administered to four neonates. None of the patients received a medication that aligned with an actionable pharmacogenetic variant as defined by Level A CPIC guidance. CONCLUSION: Most participants opted to receive PGx results. 89% had actionable variants, consistent with population estimates. Obtaining fetal PGx data is feasible for medically complex neonates. Further studies are needed for broad clinical application of PGx in fetuses with major congenital abnormalities. Our study demonstrates the potential of PGx as useful preemptive clinical information that could be obtained at the time of fetal exome sequencing for other indications. CLINICALTRIALS: gov Registration: NCT03911531.


Asunto(s)
Citocromo P-450 CYP2D6 , Farmacogenética , Humanos , Recién Nacido , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/genética , Feto , Transportador 1 de Anión Orgánico Específico del Hígado , Farmacogenética/métodos , Estudios Prospectivos
13.
Am J Med Genet A ; 188(9): 2738-2749, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35799415

RESUMEN

Maple syrup urine disease (MSUD) is an intoxication-type inherited metabolic disorder in which hyperleucinemia leads to brain swelling and death without treatment. MSUD is caused by branched-chain alpha-ketoacid dehydrogenase deficiency due to biallelic loss of the protein products from the genes BCKDHA, BCKDHB, or DBT, while a distinct but related condition is caused by loss of DLD. In this case series, eleven individuals with MSUD caused by two pathogenic variants in DBT are presented. All eleven individuals have a deletion of exon 2 (delEx2, NM_001918.3:c.48_171del); six individuals are homozygous and five individuals are compound heterozygous with a novel missense variant (NM_001918.5:c.916 T > C [p.Ser306Pro]) confirmed to be in trans. Western Blot indicates decreased amount of protein product in delEx2;c.916 T > C liver cells and absence of protein product in delEx2 homozygous hepatocytes. Ultrahigh performance liquid chromatography-tandem mass spectrometry demonstrates an accumulation of branched-chain amino acids and alpha-ketoacids in explanted hepatocytes. Individuals with these variants have a neonatal-onset, non-thiamine-responsive, classical form of MSUD. Strikingly, the entire cohort is derived from families who immigrated to the Washington, DC, metro area from Honduras or El Salvador suggesting the possibility of a founder effect.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , América Central , Genómica , Humanos , Recién Nacido , Enfermedad de la Orina de Jarabe de Arce/genética , Mutación
14.
Genet Med ; 23(1): 3-12, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33082562

RESUMEN

Hydrops fetalis (HF), accumulation of fluid in two or more fetal compartments, is life-threatening to the fetus. Genetic etiologies include many chromosomal and monogenic disorders. Despite this, the clinical workup typically evaluates limited genetic targets. To support broader molecular testing of pregnancies with HF, we cataloged the spectrum of monogenic disorders associated with nonimmune hydrops fetalis (NIHF). We performed a systematic literature review under PROSPERO tag CRD42018099495 of cases reporting NIHF meeting strict phenotypic criteria and well-defined genetic diagnosis. We ranked the evidence per gene based on number of reported cases, phenotype, and molecular/biochemical diagnosis. We identified 131 genes with strong evidence for an association with NIHF and 46 genes with emerging evidence spanning the spectrum of multisystem syndromes, cardiac disorders, hematologic disorders, and metabolic disorders. Several genes previously implicated with NIHF did not have any reported cases in the literature with both fetal hydrops and molecular diagnosis. Many genes with strong evidence for association with NIHF would not be detected using current sequencing panels. Nonimmune HF has many possible monogenic etiologies, several with treatment implications, but current diagnostic approaches are not exhaustive. Studies are needed to assess if broad sequencing approaches like exome sequencing are useful in clinical management of HF.


Asunto(s)
Feto , Hidropesía Fetal , Femenino , Humanos , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Embarazo , Atención Prenatal , Secuenciación del Exoma
15.
Genet Med ; 23(7): 1325-1333, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33686258

RESUMEN

PURPOSE: Nonimmune hydrops fetalis (NIHF) presents as life-threatening fluid collections in multiple fetal compartments and can be caused by both genetic and non-genetic etiologies. We explored incremental diagnostic yield of testing with prenatal exome sequencing (ES) for NIHF following a negative standard NIHF workup. METHODS: Participants enrolled into the Hydrops-Yielding Diagnostic Results of Prenatal Sequencing (HYDROPS) study met a strict definition of NIHF and had negative standard-of-care workup. Clinical trio ES from fetal samples and parental blood was performed at a CLIA-certified reference laboratory with clinical reports returned by geneticists and genetic counselors. Negative exomes were reanalyzed with information from subsequent ultrasounds and records. RESULTS: Twenty-two fetal exomes reported 11 (50%) diagnostic results and five possible diagnoses (22.7%). Diagnosed cases comprised seven de novodominant disorders, three recessive disorders, and one inherited dominant disorder including four Noonan syndromes (PTPN11, RAF1, RIT1, and RRAS2), three musculoskeletal disorders (RYR1, AMER1, and BICD2), two metabolic disorders (sialidosis and multiple sulfatase deficiency), one Kabuki syndrome, and one congenital anemia (KLF1). CONCLUSION: The etiology of NIHF predicts postnatal prognosis and recurrence risk in future pregnancies. ES provides high incremental diagnostic yield for NIHF after standard-of-care testing and should be considered in the workup.


Asunto(s)
Exoma , Hidropesía Fetal , Exoma/genética , Femenino , Feto , Humanos , Hidropesía Fetal/diagnóstico , Hidropesía Fetal/genética , Embarazo , Atención Prenatal , Diagnóstico Prenatal , Secuenciación del Exoma
16.
Hum Mutat ; 41(12): 2155-2166, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32939873

RESUMEN

Genetic variation in the highly conserved Sonic Hedgehog (SHH) gene is one of the most common genetic causes for the malformations of the brain and face in humans described as the holoprosencephaly clinical spectrum. However, only a minor fraction of known SHH variants have been experimentally proven to lead to abnormal function. Employing a phenotypic rescue assay with synthetic human messenger RNA variant constructs in shha-/- knockout zebrafish, we evaluated 104 clinically reported in-frame and missense SHH variants. Our data helped us to classify them into loss of function variants (31), hypomorphic variants (33), and nonpathogenic variants (40). We discuss the strengths and weaknesses of currently accepted predictors of variant deleteriousness and the American College of Medical Genetics and Genomics guidelines for variant interpretation in the context of this functional model; furthermore, we demonstrate the robustness of model systems such as zebrafish as a rapid method to resolve variants of uncertain significance.


Asunto(s)
Sistemas CRISPR-Cas/genética , Variación Genética , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Alelos , Animales , Modelos Animales de Enfermedad , Familia , Estudios de Asociación Genética , Guías como Asunto , Humanos , Mutación con Pérdida de Función/genética , Mutación/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sociedades Científicas
17.
Genet Med ; 22(5): 857-866, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31949312

RESUMEN

PURPOSE: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. METHODS: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and body mass index were calculated at different ages. RESULTS: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between -4 and -8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. CONCLUSIONS: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.


Asunto(s)
Enanismo , Adulto , Femenino , Humanos , Fenotipo , Estudios Retrospectivos
18.
Brain ; 142(9): 2631-2643, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31334757

RESUMEN

Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Endogámicos C57BL , Cohesinas
19.
J Med Genet ; 54(12): 825-829, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28592524

RESUMEN

BACKGROUND: Congenital heart disease (CHD) is a common birth defect affecting approximately 1% of newborns. Great progress has been made in elucidating the genetic aetiology of CHD with advances in genomic technology, which we leveraged in recovering a new pathway affecting heart development in humans previously known to affect heart development in an animal model. METHODS: Four hundred and sixteen individuals from Thailand and the USA diagnosed with CHD and/or congenital diaphragmatic hernia were evaluated with chromosomal microarray and whole exome sequencing. The DECIPHER Consortium and medical literature were searched for additional patients. Murine hearts from ENU-induced mouse mutants and transgenic mice were evaluated using both episcopic confocal histopathology and troponin I stained sections. RESULTS: Loss of function ROBO1 variants were identified in three families; each proband had a ventricular septal defect, and one proband had tetralogy of Fallot. Additionally, a microdeletion in an individual with CHD was found in the medical literature. Mouse models showed perturbation of the Slit-Robo signalling pathway, causing septation and outflow tract defects and craniofacial anomalies. Two probands had variable facial features consistent with the mouse model. CONCLUSION: Our findings identify Slit-Robo as a significant pathway in human heart development and CHD.


Asunto(s)
Defectos de los Tabiques Cardíacos/diagnóstico , Defectos de los Tabiques Cardíacos/genética , Mutación con Pérdida de Función , Proteínas del Tejido Nervioso/genética , Fenotipo , Receptores Inmunológicos/genética , Tetralogía de Fallot/diagnóstico , Tetralogía de Fallot/genética , Animales , Niño , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Ratones , Polimorfismo de Nucleótido Simple , Proteínas Roundabout
20.
Hum Genet ; 136(4): 409-420, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28213671

RESUMEN

Smith-Magenis syndrome (SMS), a neurodevelopmental disorder characterized by dysmorphic features, intellectual disability (ID), and sleep disturbances, results from a 17p11.2 microdeletion or a mutation in the RAI1 gene. We performed exome sequencing on 6 patients with SMS-like phenotypes but without chromosomal abnormalities or RAI1 variants. We identified pathogenic de novo variants in two cases, a nonsense variant in IQSEC2 and a missense variant in the SAND domain of DEAF1, and candidate de novo missense variants in an additional two cases. One candidate variant was located in an alpha helix of Necdin (NDN), phased to the paternally inherited allele. NDN is maternally imprinted within the 15q11.2 Prader-Willi Syndrome (PWS) region. This can help clarify NDN's role in the PWS phenotype. No definitive pathogenic gene variants were detected in the remaining SMS-like cases, but we report our findings for future comparison. This study provides information about the inheritance pattern and recurrence risk for patients with identified variants and demonstrates clinical and genetic overlap of neurodevelopmental disorders. Identification and characterization of ID-related genes that assist in development of common developmental pathways and/or gene-networks, may inform disease mechanism and treatment strategies.


Asunto(s)
Exoma , Síndrome de Smith-Magenis/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Preescolar , Estudios de Cohortes , Proteínas de Unión al ADN , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Proteínas Nucleares/genética , Homología de Secuencia de Aminoácido , Transactivadores , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA