Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Learn Mem ; 29(8): 203-215, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35882502

RESUMEN

Inclusion of male and female subjects in behavioral neuroscience research requires a concerted effort to characterize sex differences in standardized behavioral assays. Sex differences in hippocampus-dependent assays have been widely reported but are still poorly characterized. In the present study, we conducted a parametric analysis of spontaneous alternation, object recognition, and fear conditioning in a commonly used control strain, C57BL/6NTac. Our findings show largely similar performance between males and females across the majority of behavioral end points. However, we identified an important difference in nonassociative fear sensitization, whereby females showed an enhanced fear response to the 75-dB tone that is used as the conditional stimulus. In addition, we observed an impairment in object location performance in females that was ameliorated by more extensive habituation to handling. Together, these findings argue that sex differences in nonassociative fear responses to both novel auditory cues and novel objects need to be considered when designing and interpreting cognitive assays in C57BL/6 mice. Furthermore, this elevated fear sensitization could serve as a novel approach to model the increased incidence of anxiety disorders in women.


Asunto(s)
Escala de Evaluación de la Conducta , Miedo , Animales , Señales (Psicología) , Miedo/fisiología , Femenino , Hipocampo/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
2.
J Physiol ; 599(20): 4687-4704, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487349

RESUMEN

The activation of α7 nicotinic acetylcholine receptors (nAChRs) has been shown to improve hippocampus-dependent learning and memory. α7 nAChRs are densely expressed among several different cell types in the hippocampus, with high Ca2+  permeability, although it is unclear if α7 nAChRs mobilize differential signalling mechanisms among distinct neuronal populations. To address this question, we compared α7 nAChR agonist-induced responses (i.e. calcium and cAMP changes) between granule cells and GABAergic neurons in the hippocampal dentate gyrus both in vitro and in vivo. In cultured organotypic hippocampal slices, we observed robust intracellular calcium and cAMP increases in dentate granule cells upon activation of α7 nAChRs. In contrast, GABAergic interneurons displayed little change in either calcium or cAMP concentration after α7 nAChR activation, even though they displayed much larger α7 nAChR current responses than those of dentate granule cells. We found that this was due to smaller α7 nAChR-induced Ca2+ rises in GABAergic interneurons. Thus, the regulation of the Ca2+ transients in different cell types resulted in differential subsequent intracellular signalling cascades and likely the ultimate outcome of α7 nAChR activation. Furthermore, we monitored neuronal activities of dentate granule cells and GABAergic interneurons in vivo via optic fibre photometry. We observed enhancement of neuronal activities after nicotine administration in dentate granule cells, but not in GABAergic neurons, which was absent in α7 nAChR-deficient granule cells. In summary, we reveal a mechanism for α7 nAChR-mediated increase of neuronal activity via cell type-specific intracellular signalling pathways. KEY POINTS: α7 nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system and regulate a variety of brain functions including learning and memory. Understanding the cellular signalling mechanisms of their activations among different neuronal populations is important for delineating their actions in cognitive function, and developing effective treatment strategies for cognitive deficits. We report that α7 nAChR activation leads to Ca2+ and cAMP increases in granule cells (but not in GABAergic interneurons) in hippocampal dentate gyrus in vitro, a key region for pattern separation during learning. We also found that nicotine enhanced granule cell (but not in GABAergic interneurons) activity in an α7 nAChR-dependent manner via in vivo fibre photometry recording. Based on our findings, we propose that differential responses to α7 nAChR activation between granule cells and GABAergic interneurons is responsible for the increase of excitation by α7 nAChR agonists in hippocampal circuits synergistically.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Giro Dentado/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
3.
Physiol Behav ; 283: 114595, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38810714

RESUMEN

Isolation of sex differences as a key characteristic underlying neurobehavioral differentiation is an essential component of studies in neuroscience. The current study sought to address this concern by observing behavioral differences using an automated home cage system for neurobehavioral assessment, a method rapidly increasing in use due to advances in technology and advantages such as reduced handling stress and cross-lab variability. Sex differences in C57BL/6 mice arose for motor activity and circadian-linked behavior, with females being more active compared to males, and males having a stronger anticipatory increase in activity leading up to the onset of the light phase compared to females. These activity differences were observed not only across the lifespan, but also in different genetic background mouse strains across different testing sites showing the generalizability and robustness of these observed effects. Activity differences were also observed in performance on a spatial learning and reversal task with females making more responses and receiving a corresponding elevation in reward pellets. Notably, there were no sex differences in learning nor achieved accuracy, suggesting these observed effects were predominantly in activity. The outcomes of this study align with previous reports showcasing differences in activity between males and females. The comparison across strains and testing sites showed robust and reproducible differences in behavior between female and male mice that are relevant to consider when designing behavioral studies. Furthermore, the observed sex differences in performance on the learning and reversal procedure raise concern for interpretation of behavior differences between sexes due to the attribution of these differences to motor activity rather than cognition.

4.
Front Behav Neurosci ; 16: 1067409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505727

RESUMEN

Introduction: Altered signaling or function of acetylcholine (ACh) has been reported in various neurological diseases, including Alzheimer's disease, Tourette syndrome, epilepsy among others. Many neurons that release ACh also co-transmit the neurotransmitter gamma-aminobutyrate (GABA) at synapses in the hippocampus, striatum, substantia nigra, and medial prefrontal cortex (mPFC). Although ACh transmission is crucial for higher brain functions such as learning and memory, the role of co-transmitted GABA from ACh neurons in brain function remains unknown. Thus, the overarching goal of this study was to investigate how a systemic loss of GABA co-transmission from ACh neurons affected the behavioral performance of mice. Methods: To do this, we used a conditional knock-out mouse of the vesicular GABA transporter (vGAT) crossed with the ChAT-Cre driver line to selectively ablate GABA co-transmission at ACh synapses. In a comprehensive series of standardized behavioral assays, we compared Cre-negative control mice with Cre-positive vGAT knock-out mice of both sexes. Results: Loss of GABA co-transmission from ACh neurons did not disrupt the animal's sociability, motor skills or sensation. However, in the absence of GABA co-transmission, we found significant alterations in social, spatial and fear memory as well as a reduced reliance on striatum-dependent response strategies in a T-maze. In addition, male conditional knockout (CKO) mice showed increased locomotion. Discussion: Taken together, the loss of GABA co-transmission leads to deficits in higher brain functions and behaviors. Therefore, we propose that ACh/GABA co-transmission modulates neural circuitry involved in the affected behaviors.

5.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33446515

RESUMEN

Object recognition tasks are widely used assays for studying learning and memory in rodents. Object recognition typically involves familiarizing mice with a set of objects and then presenting a novel object or displacing an object to a novel location or context. Learning and memory are inferred by a relative increase in time investigating the novel/displaced object. These tasks are in widespread use, but there are many inconsistencies in the way they are conducted across labs. Two major contributors to this are the lack of consistency in the method of measuring object investigation and the lack of standardization of the objects that are used. Current video-based automated algorithms can often be unreliable whereas manual scoring of object investigation is time consuming, tedious, and more subjective. To resolve these issues, we sought to design and implement 3D-printed objects that can be standardized across labs and use capacitive sensing to measure object investigation. Using a 3D printer, conductive filament, and low-cost off-the-shelf components, we demonstrate that employing 3D-printed capacitive touch objects is a reliable and precise way to perform object recognition tasks. Ultimately, this approach will lead to increased standardization and consistency across labs, which will greatly improve basic and translational research into learning and memory mechanisms.


Asunto(s)
Algoritmos , Memoria , Animales , Ratones , Impresión Tridimensional , Tacto , Percepción Visual
6.
Front Behav Neurosci ; 15: 735387, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630052

RESUMEN

The reproducibility crisis (or replication crisis) in biomedical research is a particularly existential and under-addressed issue in the field of behavioral neuroscience, where, in spite of efforts to standardize testing and assay protocols, several known and unknown sources of confounding environmental factors add to variance. Human interference is a major contributor to variability both within and across laboratories, as well as novelty-induced anxiety. Attempts to reduce human interference and to measure more "natural" behaviors in subjects has led to the development of automated home-cage monitoring systems. These systems enable prolonged and longitudinal recordings, and provide large continuous measures of spontaneous behavior that can be analyzed across multiple time scales. In this review, a diverse team of neuroscientists and product developers share their experiences using such an automated monitoring system that combines Noldus PhenoTyper® home-cages and the video-based tracking software, EthoVision® XT, to extract digital biomarkers of motor, emotional, social and cognitive behavior. After presenting our working definition of a "home-cage", we compare home-cage testing with more conventional out-of-cage tests (e.g., the open field) and outline the various advantages of the former, including opportunities for within-subject analyses and assessments of circadian and ultradian activity. Next, we address technical issues pertaining to the acquisition of behavioral data, such as the fine-tuning of the tracking software and the potential for integration with biotelemetry and optogenetics. Finally, we provide guidance on which behavioral measures to emphasize, how to filter, segment, and analyze behavior, and how to use analysis scripts. We summarize how the PhenoTyper has applications to study neuropharmacology as well as animal models of neurodegenerative and neuropsychiatric illness. Looking forward, we examine current challenges and the impact of new developments. Examples include the automated recognition of specific behaviors, unambiguous tracking of individuals in a social context, the development of more animal-centered measures of behavior and ways of dealing with large datasets. Together, we advocate that by embracing standardized home-cage monitoring platforms like the PhenoTyper, we are poised to directly assess issues pertaining to reproducibility, and more importantly, measure features of rodent behavior under more ethologically relevant scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA