Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(13): e2319998121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513096

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called CoAA9A, up-regulated during plant infection by Colletotrichum orbiculare, the causative agent of anthracnose. After recombinant production of the full-length protein, we found that the dCTR mediates CoAA9A dimerization in vitro, via a disulfide bridge, a hitherto-never-reported property that positively affects both binding and activity on cellulose. Using SAXS experiments, we show that the homodimer is in an extended conformation. In vivo, we demonstrate that gene deletion impairs formation of the infection-specialized cell called appressorium and delays penetration of the plant. Using immunochemistry, we show that the protein is a dimer not only in vitro but also in vivo when secreted by the appressorium. As these peculiar LPMOs are also found in other plant pathogens, our findings open up broad avenues for crop protection.


Asunto(s)
Proteínas Fúngicas , Polisacáridos , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Difracción de Rayos X , Polisacáridos/metabolismo , Celulosa/metabolismo
2.
PLoS Pathog ; 19(4): e1010946, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37099613

RESUMEN

Fungi often adapt to environmental stress by altering their size, shape, or rate of cell division. These morphological changes require reorganization of the cell wall, a structural feature external to the cell membrane composed of highly interconnected polysaccharides and glycoproteins. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that are typically secreted into the extracellular space to catalyze initial oxidative steps in the degradation of complex biopolymers such as chitin and cellulose. However, their roles in modifying endogenous microbial carbohydrates are poorly characterized. The CEL1 gene in the human fungal pathogen Cryptococcus neoformans (Cn) is predicted by sequence homology to encode an LPMO of the AA9 enzyme family. The CEL1 gene is induced by host physiological pH and temperature, and it is primarily localized to the fungal cell wall. Targeted mutation of the CEL1 gene revealed that it is required for the expression of stress response phenotypes, including thermotolerance, cell wall integrity, and efficient cell cycle progression. Accordingly, a cel1Δ deletion mutant was avirulent in two models of C. neoformans infection. Therefore, in contrast to LPMO activity in other microorganisms that primarily targets exogenous polysaccharides, these data suggest that CnCel1 promotes intrinsic fungal cell wall remodeling events required for efficient adaptation to the host environment.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Polisacáridos Fúngicos , Termotolerancia , Humanos , Oxigenasas de Función Mixta/genética , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Polisacáridos/metabolismo , Pared Celular/metabolismo
3.
Appl Environ Microbiol ; 90(3): e0193123, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376171

RESUMEN

White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.


Asunto(s)
Basidiomycota , Peróxido de Hidrógeno , Polyporaceae , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Madera/microbiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Basidiomycota/metabolismo , Oxidación-Reducción , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Carbohidratos , Metionina/metabolismo , Sulfonas/metabolismo
4.
Appl Environ Microbiol ; 89(10): e0057323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37702503

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and ß-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.


Asunto(s)
Quitina , Polisacáridos , Quitina/metabolismo , Polisacáridos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Celulosa/metabolismo , Pared Celular/metabolismo
5.
Biomacromolecules ; 24(7): 3246-3255, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37327397

RESUMEN

Lytic polysaccharide monooxygenase (LPMO) enzymes have recently shaken up our knowledge of the enzymatic degradation of biopolymers and cellulose in particular. This unique class of metalloenzymes cleaves cellulose and other recalcitrant polysaccharides using an oxidative mechanism. Despite their potential in biomass saccharification and cellulose fibrillation, the detailed mode of action of LPMOs at the surface of cellulose fibers still remains poorly understood and highly challenging to investigate. In this study, we first determined the optimal parameters (temperature, pH, enzyme concentration, and pulp consistency) of LPMO action on the cellulose fibers by analyzing the changes in molar mass distribution of solubilized fibers using high performance size exclusion chromatography (HPSEC). Using an experimental design approach with a fungal LPMO from the AA9 family (PaLPMO9H) and cotton fibers, we revealed a maximum decrease in molar mass at 26.6 °C and pH 5.5, with 1.6% w/w enzyme loading in dilute cellulose dispersions (100 mg of cellulose at 0.5% w/v). These optimal conditions were used to further investigate the effect of PaLPMO9H on the cellulosic fiber structure. Direct visualization of the fiber surface by scanning electron microscopy (SEM) revealed that PaLPMO9H created cracks on the cellulose surface while it attacked tension regions that triggered the rearrangement of cellulose chains. Solid-state NMR indicated that PaLPMO9H increased the lateral fibril dimension and created novel accessible surfaces. This study confirms the LPMO-driven disruption of cellulose fibers and extends our knowledge of the mechanism underlying such modifications. We hypothesize that the oxidative cleavage at the surface of the fibers releases the tension stress with loosening of the fiber structure and peeling of the surface, thereby increasing the accessibility and facilitating fibrillation.


Asunto(s)
Celulosa , Fibra de Algodón , Celulosa/química , Polisacáridos/metabolismo , Oxigenasas de Función Mixta/química , Oxidación-Reducción
6.
J Biol Chem ; 296: 100086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33199373

RESUMEN

Understanding enzymatic breakdown of plant biomass is crucial to develop nature-inspired biotechnological processes. Lytic polysaccharide monooxygenases (LPMOs) are microbial enzymes secreted by fungal saprotrophs involved in carbon recycling. LPMOs modify biomass by oxidatively cleaving polysaccharides, thereby enhancing the efficiency of glycoside hydrolases. Fungal AA9 LPMOs are active on cellulose, but some members also display activity on hemicelluloses and/or oligosaccharides. Although the active site subsites are well defined for a few model LPMOs, the molecular determinants driving broad substrate specificity are still not easily predictable. Based on bioinformatic clustering and sequence alignments, we selected seven fungal AA9 LPMOs that differ in the amino-acid residues constituting their subsites. Investigation of their substrate specificities revealed that all these LPMOs are active on cellulose and cello-oligosaccharides, as well as plant cell wall-derived hemicellulosic polysaccharides, and carry out C4 oxidative cleavage. The product profiles from cello-oligosaccharide degradation suggest that the subtle differences in amino-acid sequence within the substrate-binding loop regions lead to different preferred binding modes. Our functional analyses allowed us to probe the molecular determinants of substrate binding within two AA9 LPMO subclusters. Many wood-degrading fungal species rich in AA9 genes have at least one AA9 enzyme with structural loop features that allow recognition of short ß-(1,4)-linked glucan chains. Time-course monitoring of these AA9 LPMOs on cello-oligosaccharides also provides a useful model system for mechanistic studies of LPMO catalysis. These results are valuable for the understanding of LPMO contribution to wood decaying process in nature and for the development of sustainable biorefineries.


Asunto(s)
Pared Celular/metabolismo , Celulosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Pared Celular/química , Biología Computacional , Hongos/enzimología , Hongos/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Especificidad por Sustrato
7.
Appl Environ Microbiol ; 88(23): e0158122, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36354345

RESUMEN

Filamentous fungi are keystone microorganisms in the regulation of many processes occurring on Earth, such as plant biomass decay and pathogenesis as well as symbiotic associations. In many of these processes, fungi secrete carbohydrate-active enzymes (CAZymes) to modify and/or degrade carbohydrates. Ten years ago, while evaluating the potential of a secretome from the maize pathogen Ustilago maydis to supplement lignocellulolytic cocktails, we noticed it contained many unknown or poorly characterized CAZymes. Here, and after reannotation of this data set and detailed phylogenetic analyses, we observed that several CAZymes (including glycoside hydrolases and carbohydrate oxidases) are predicted to act on the fungal cell wall (FCW), notably on ß-1,3-glucans. We heterologously produced and biochemically characterized two new CAZymes, called UmGH16_1-A and UmAA3_2-A. We show that UmGH16_1-A displays ß-1,3-glucanase activity, with a preference for ß-1,3-glucans with short ß-1,6 substitutions, and UmAA3_2-A is a dehydrogenase catalyzing the oxidation of ß-1,3- and ß-1,6-gluco-oligosaccharides into the corresponding aldonic acids. Working on model ß-1,3-glucans, we show that the linear oligosaccharide products released by UmGH16_1-A are further oxidized by UmAA3_2-A, bringing to light a putative biocatalytic cascade. Interestingly, analysis of available transcriptomics data indicates that both UmGH16_1-A and UmAA3_2-A are coexpressed, only during early stages of U. maydis infection cycle. Altogether, our results suggest that both enzymes are connected and that additional accessory activities still need to be uncovered to fully understand the biocatalytic cascade at play and its physiological role. IMPORTANCE Filamentous fungi play a central regulatory role on Earth, notably in the global carbon cycle. Regardless of their lifestyle, filamentous fungi need to remodel their own cell wall (mostly composed of polysaccharides) to grow and proliferate. To do so, they must secrete a large arsenal of enzymes, most notably carbohydrate-active enzymes (CAZymes). However, research on fungal CAZymes over past decades has mainly focused on finding efficient plant biomass conversion processes while CAZymes directed at the fungus itself have remained little explored. In the present study, using the maize pathogen Ustilago maydis as model, we set off to evaluate the prevalence of CAZymes directed toward the fungal cell wall during growth of the fungus on plant biomass and characterized two new CAZymes active on fungal cell wall components. Our results suggest the existence of a biocatalytic cascade that remains to be fully understood.


Asunto(s)
Glicósido Hidrolasas , Ustilago , Glicósido Hidrolasas/metabolismo , Zea mays/metabolismo , Oxidorreductasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Pared Celular/metabolismo , Hongos/metabolismo , Plantas/metabolismo , Carbohidratos , Glucanos/metabolismo
8.
New Phytol ; 233(6): 2380-2396, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34918344

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.


Asunto(s)
Oxigenasas de Función Mixta , Polisacáridos , Celulosa/metabolismo , Quitina/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo
9.
New Phytol ; 233(6): 2534-2547, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34942023

RESUMEN

In ectomycorrhiza, root penetration and colonization of the intercellular space by symbiotic hyphae is thought to rely on the mechanical force that results from hyphal tip growth, enhanced by the activity of secreted cell-wall-degrading enzymes. Here, we characterize the biochemical properties of the symbiosis-induced polygalacturonase LbGH28A from the ectomycorrhizal fungus Laccaria bicolor. The transcriptional regulation of LbGH28A was measured by quantitative PCR (qPCR). The biological relevance of LbGH28A was confirmed by generating RNA interference (RNAi)-silenced LbGH28A mutants. We localized the LbGH28A protein by immunofluorescence confocal and immunogold cytochemical microscopy in poplar ectomycorrhizal roots. Quantitative PCR confirmed the induced expression of LbGH28A during ectomycorrhiza formation. Laccaria bicolor RNAi mutants have a lower ability to establish ectomycorrhiza, confirming the key role of this enzyme in symbiosis. The purified recombinant LbGH28A has its highest activity towards pectin and polygalacturonic acid. In situ localization of LbGH28A indicates that this endopolygalacturonase is located in both fungal and plant cell walls at the symbiotic hyphal front. These findings suggest that the symbiosis-induced pectinase LbGH28A is involved in the Hartig net formation and is an important determinant for successful symbiotic colonization.


Asunto(s)
Basidiomycota , Laccaria , Micorrizas , Laccaria/genética , Micorrizas/fisiología , Raíces de Plantas/fisiología , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Simbiosis/fisiología
10.
Nat Chem Biol ; 16(3): 345-350, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31932718

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in the oxidative degradation of various biopolymers such as cellulose and chitin. While hunting for new LPMOs, we identified a new family of proteins, defined here as X325, in various fungal lineages. The three-dimensional structure of X325 revealed an overall LPMO fold and a His brace with an additional Asp ligand to Cu(II). Although LPMO-type activity of X325 members was initially expected, we demonstrated that X325 members do not perform oxidative cleavage of polysaccharides, establishing that X325s are not LPMOs. Investigations of the biological role of X325 in the ectomycorrhizal fungus Laccaria bicolor revealed exposure of the X325 protein at the interface between fungal hyphae and tree rootlet cells. Our results provide insights into a family of copper-containing proteins, which is widespread in the fungal kingdom and is evolutionarily related to LPMOs, but has diverged to biological functions other than polysaccharide degradation.


Asunto(s)
Cobre/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Sitios de Unión , Celulosa/metabolismo , Quitina/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/ultraestructura , Oxidación-Reducción , Filogenia , Polisacáridos/metabolismo
11.
Analyst ; 147(11): 2515-2522, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35543191

RESUMEN

1D 1H NMR spectroscopy has been widely used to monitor enzymatic activity by recording the evolution of the spectra of substrates and/or products, thanks to the linear response of NMR. For complex systems involving the coexistence of multiple compounds (substrate, final product and various intermediates), the identification and quantification can be a more arduous task. Here, we present a simple analytical method for the rapid characterization of reaction mixtures involving enzymatic complexes using Maximum Quantum (MaxQ) NMR, accelerated with the Non-Uniform Sampling (NUS) acquisition procedure. Specifically, this approach enables, in the first analytical step, the counting of the molecules present in the samples. We also show, using two different enzymatic systems, that the implementation of these pulse sequences implies precautions related to the short relaxation times due to the presence of metallo-enzymes or paramagnetic catalysts. Finally, the combination of MaxQ and diffusion experiments, which leads to a 3D chart, greatly improves the resolution and offers an extreme simplification of the spectra while giving valuable indications on the affinity of the enzymes to the different compounds present in the reaction mixture.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos
12.
Cell Mol Life Sci ; 78(24): 8187-8208, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34738149

RESUMEN

There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.


Asunto(s)
Cobre/metabolismo , Radicales Libres/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Metaloproteínas/metabolismo , Oxidorreductasas/metabolismo , Filogenia , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Cobre/química , Radicales Libres/química , Proteínas Fúngicas/química , Metaloproteínas/química , Oxidación-Reducción , Oxidorreductasas/química , Conformación Proteica , Especificidad por Sustrato
13.
Appl Environ Microbiol ; 87(24): e0152621, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613753

RESUMEN

Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum, and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in the absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29 to 52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11, AA12, AA13, and AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris, and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavor and fragrance ingredients. Copper radical alcohol oxidases (CRO-AlcOx) have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial applications to alleviate various costs pertaining to biocatalyst production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative stress conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, and lytic polysaccharide monooxygenases [LPMOs]) usually assigned to "plant cell wall degradation," despite the absence of any plant-biomass mimicking compound. However, in these conditions, only small amounts of CRO-AlcOx were secreted, pointing out recombinant expression as the most promising path for their biocatalytic application.


Asunto(s)
Colletotrichum , Cobre , Ácidos Grasos/biosíntesis , Oxidorreductasas/metabolismo , Alcoholes , Aldehídos , Colletotrichum/enzimología , Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxidorreductasas/genética , Secretoma
14.
New Phytol ; 232(3): 1337-1349, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34389999

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes of industrial and biological importance. In particular, LPMOs play important roles in fungal lifestyle. No inhibitors of LPMOs have yet been reported. In this study, a diverse library of 100 plant extracts was screened for LPMO activity-modulating effects. By employing protein crystallography and LC-MS, we successfully identified a natural LPMO inhibitor. Extract screening revealed a significant LPMO inhibition by methanolic extract of Cinnamomum cassia (cinnamon), which inhibited LsAA9A LPMO from Lentinus similis in a concentration-dependent manner. With a notable exception, other microbial LPMOs from families AA9 and AA10 were also inhibited by this cinnamon extract. The polyphenol cinnamtannin B1 was identified as the inhibitory component by crystallography. Cinnamtannin B1 was bound to the surface of LsAA9A at two distinct binding sites: one close to the active site and another at a pocket on the opposite side of the protein. Independent characterization of cinnamon extract by LC-MS and subsequent activity measurements confirmed that the compound inhibiting LsAA9A was cinnamtannin B1. The results of this study show that specific natural LPMO inhibitors of plant origin exist in nature, providing the opportunity for future exploitation of such compounds within various biotechnological contexts.


Asunto(s)
Oxigenasas de Función Mixta , Extractos Vegetales , Proteínas Fúngicas , Lentinula , Extractos Vegetales/farmacología , Polisacáridos
15.
Trends Biochem Sci ; 41(7): 633-645, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27211037

RESUMEN

Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries.


Asunto(s)
Biocombustibles , Biomasa , Enzimas/metabolismo , Hongos/enzimología , Lignina/metabolismo , Hidrólisis , Lignina/química
16.
J Biol Chem ; 294(45): 17117-17130, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31471321

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are redox-enzymes involved in biomass degradation. All characterized LPMOs possess an active site of two highly conserved histidine residues coordinating a copper ion (the histidine brace), which are essential for LPMO activity. However, some protein sequences that belong to the AA9 LPMO family display a natural N-terminal His to Arg substitution (Arg-AA9). These are found almost entirely in the phylogenetic fungal class Agaricomycetes, associated with wood decay, but no function has been demonstrated for any Arg-AA9. Through bioinformatics, transcriptomic, and proteomic analyses we present data, which suggest that Arg-AA9 proteins could have a hitherto unidentified role in fungal degradation of lignocellulosic biomass in conjunction with other secreted fungal enzymes. We present the first structure of an Arg-AA9, LsAA9B, a naturally occurring protein from Lentinus similis The LsAA9B structure reveals gross changes in the region equivalent to the canonical LPMO copper-binding site, whereas features implicated in carbohydrate binding in AA9 LPMOs have been maintained. We obtained a structure of LsAA9B with xylotetraose bound on the surface of the protein although with a considerably different binding mode compared with other AA9 complex structures. In addition, we have found indications of protein phosphorylation near the N-terminal Arg and the carbohydrate-binding site, for which the potential function is currently unknown. Our results are strong evidence that Arg-AA9s function markedly different from canonical AA9 LPMO, but nonetheless, may play a role in fungal conversion of lignocellulosic biomass.


Asunto(s)
Histidina , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Ligandos , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Fosforilación , Filogenia
17.
J Am Chem Soc ; 142(10): 4648-4662, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053363

RESUMEN

Identifying and characterizing the enzymes responsible for an observed activity within a complex eukaryotic catabolic system remains one of the most significant challenges in the study of biomass-degrading systems. The debranching of both complex hemicellulosic and pectinaceous polysaccharides requires the production of α-l-arabinofuranosidases among a wide variety of coexpressed carbohydrate-active enzymes. To selectively detect and identify α-l-arabinofuranosidases produced by fungi grown on complex biomass, potential covalent inhibitors and probes which mimic α-l-arabinofuranosides were sought. The conformational free energy landscapes of free α-l-arabinofuranose and several rationally designed covalent α-l-arabinofuranosidase inhibitors were analyzed. A synthetic route to these inhibitors was subsequently developed based on a key Wittig-Still rearrangement. Through a combination of kinetic measurements, intact mass spectrometry, and structural experiments, the designed inhibitors were shown to efficiently label the catalytic nucleophiles of retaining GH51 and GH54 α-l-arabinofuranosidases. Activity-based probes elaborated from an inhibitor with an aziridine warhead were applied to the identification and characterization of α-l-arabinofuranosidases within the secretome of A. niger grown on arabinan. This method was extended to the detection and identification of α-l-arabinofuranosidases produced by eight biomass-degrading basidiomycete fungi grown on complex biomass. The broad applicability of the cyclophellitol-derived activity-based probes and inhibitors presented here make them a valuable new tool in the characterization of complex eukaryotic carbohydrate-degrading systems and in the high-throughput discovery of α-l-arabinofuranosidases.


Asunto(s)
Ciclopentanos/química , Inhibidores Enzimáticos/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/análisis , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/análisis , Aziridinas/síntesis química , Aziridinas/química , Basidiomycota/enzimología , Ciclopentanos/síntesis química , Inhibidores Enzimáticos/síntesis química , Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Cinética , Termodinámica
18.
Nat Chem Biol ; 14(3): 306-310, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29377002

RESUMEN

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications.


Asunto(s)
Basidiomycota/enzimología , Biomasa , Oxigenasas de Función Mixta/química , Polisacáridos/química , Madera/microbiología , Biodegradación Ambiental , Biotecnología/economía , Biotecnología/métodos , Celulosa/química , Biología Computacional , Análisis Costo-Beneficio , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Genómica , Glicosilación , Oxígeno/química , Filogenia , Especificidad por Sustrato , Transcriptoma , Xilanos/química
19.
Environ Microbiol ; 21(8): 2724-2739, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30887618

RESUMEN

Plant-tissue-colonizing fungi fine-tune the deconstruction of plant-cell walls (PCW) using different sets of enzymes according to their lifestyle. However, some of these enzymes are conserved among fungi with dissimilar lifestyles. We identified genes from Glycoside Hydrolase family GH131 as commonly expressed during plant-tissue colonization by saprobic, pathogenic and symbiotic fungi. By searching all the publicly available genomes, we found that GH131-coding genes were widely distributed in the Dikarya subkingdom, except in Taphrinomycotina and Saccharomycotina, and in phytopathogenic Oomycetes, but neither other eukaryotes nor prokaryotes. The presence of GH131 in a species was correlated with its association with plants as symbiont, pathogen or saprobe. We propose that GH131-family expansions and horizontal-gene transfers contributed to this adaptation. We analysed the biochemical activities of GH131 enzymes whose genes were upregulated during plant-tissue colonization in a saprobe (Pycnoporus sanguineus), a plant symbiont (Laccaria bicolor) and three hemibiotrophic-plant pathogens (Colletotrichum higginsianum, C. graminicola, Zymoseptoria tritici). These enzymes were all active on substrates with ß-1,4, ß-1,3 and mixed ß-1,4/1,3 glucosidic linkages. Combined with a cellobiohydrolase, GH131 enzymes enhanced cellulose degradation. We propose that secreted GH131 enzymes unlock the PCW barrier and allow further deconstruction by other enzymes during plant tissue colonization by symbionts, pathogens and saprobes.


Asunto(s)
Hongos/enzimología , Glicósido Hidrolasas/metabolismo , Oomicetos/enzimología , Plantas/microbiología , Ascomicetos/enzimología , Ascomicetos/genética , Pared Celular/metabolismo , Hongos/genética , Transferencia de Gen Horizontal , Glicósido Hidrolasas/genética , Oomicetos/genética , Simbiosis
20.
Biochem Soc Trans ; 46(6): 1431-1447, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30381341

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes discovered within the last 10 years. By degrading recalcitrant substrates oxidatively, these enzymes are major contributors to the recycling of carbon in nature and are being used in the biorefinery industry. Recently, two new families of LPMOs have been defined and structurally characterized, AA14 and AA15, sharing many of previously found structural features. However, unlike most LPMOs to date, AA14 degrades xylan in the context of complex substrates, while AA15 is particularly interesting because they expand the presence of LPMOs from the predominantly microbial to the animal kingdom. The first two neutron crystallography structures have been determined, which, together with high-resolution room temperature X-ray structures, have putatively identified oxygen species at or near the active site of LPMOs. Many recent computational and experimental studies have also investigated the mechanism of action and substrate-binding mode of LPMOs. Perhaps, the most significant recent advance is the increasing structural and biochemical evidence, suggesting that LPMOs follow different mechanistic pathways with different substrates, co-substrates and reductants, by behaving as monooxygenases or peroxygenases with molecular oxygen or hydrogen peroxide as a co-substrate, respectively.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Animales , Pared Celular/metabolismo , Cristalografía por Rayos X , Oxigenasas de Función Mixta/química , Oxidación-Reducción , Plantas/química , Plantas/metabolismo , Polisacáridos/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA