Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 78(9): 2343-2353, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37667103

RESUMEN

BACKGROUND: Imipenem/funobactam (formerly XNW4107) is a novel ß-lactam/ß-lactamase inhibitor with activity against MDR Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacterales strains. Using a neutropenic murine thigh infection model, we aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) index, relative to funobactam exposure, that correlated most closely with the in vivo efficacy of imipenem/funobactam combination and the magnitude of index required for efficacy against serine carbapenemase-producing clinical strains. METHODS: Dose-fractionation was conducted against three strains. Imipenem human-simulated regimen (HSR, 500 mg q6h 1 h infusion) efficacy in combination with escalating funobactam exposures against seven A. baumannii, four P. aeruginosa and four Klebsiella pneumoniae (imipenem/funobactam MICs 0.25-16 mg/L) was assessed as 24 h change in log10cfu/thigh. RESULTS: Increased funobactam fractionation enhanced efficacy, indicating time-dependent killing. Changes in log10cfu/thigh versus %fT > MIC were poorly predictive of efficacy; bactericidal activity was observed at %fT > MIC = 0%. Across different threshold plasma funobactam concentrations (CTs), %fT > CT(1 mg/L) had the highest correlation with efficacy. Normalizing the %fT > CT = 1 mg/L index to the respective isolate imipenem/funobactam MIC ([%fT > CT]/MIC) allowed integration of the isolate's susceptibility, which further enhanced the correlation. Median (%fT > CT[1 mg/L])/MIC values associated with 1-log reductions were 9.82 and 9.90 for A. baumannii and P. aeruginosa, respectively. Median (%fT > CT[1 mg/L])/MIC associated with stasis was 55.73 for K. pneumoniae. Imipenem/funobactam 500/250 mg q6h 1 h infusion HSR produced >1-log kill against 6/7 A. baumannii, 4/4 P. aeruginosa and stasis against 4/4 K. pneumoniae. CONCLUSIONS: Imipenem/funobactam showed potent in vivo efficacy against serine carbapenemase-producers. The novel PK/PD index (%fT > CT)/MIC appeared to best describe in vivo activity.


Asunto(s)
Acinetobacter baumannii , Neutropenia , Humanos , Animales , Ratones , Imipenem/farmacología , Bacterias , Proteínas Bacterianas , Klebsiella pneumoniae
2.
Eur J Drug Metab Pharmacokinet ; 48(4): 437-441, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351777

RESUMEN

BACKGROUND AND OBJECTIVE: Extracorporeal membrane oxygenation (ECMO) is used in critically ill patients that require respiratory and/or cardiac support. Cefiderocol is a novel siderophore antibiotic that may require use in infected critically ill patients supported by ECMO. The objective of this study was to determine the loss of cefiderocol through an ex vivo adult ECMO circuit using a Quadrox-iD oxygenator. METHODS: A 3/8-inch, simulated, ex vivo closed-loop ECMO circuit was prepared with a Quadrox-iD adult oxygenator and primed with fresh whole blood. Cefiderocol was administered into the circuit to achieve a starting concentration of approximately 90 mg/L. Post-oxygenator blood samples were collected at 0, 0.25, 0.5, 1, 2, 4, 6, 12, and 24 h after the addition of the drug to determine the loss in the circuit. A glass control jar was prepared with the same blood matrix and maintained at the same temperature to determine drug degradation. The experiment was conducted in triplicate. The rate of cefiderocol loss in the ECMO circuit was compared with that in the control by one-way analysis of variance. RESULTS: At 0 h, the difference between the pre- and post-oxygenator concentrations was - 4 ± 4% (range 0 to - 7%). After 24 h, the cefiderocol percent reduction was similar between the ECMO circuit and control (50% ± 13 vs. 50% ± 9, p = 1.0). CONCLUSIONS: The degradation rate of cefiderocol did not differ significantly within the ECMO circuit and control, suggesting no loss due to sequestration or adsorption. Pharmacokinetic studies in patients supported by ECMO are warranted to determine final dosing recommendations.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Adulto , Humanos , Oxigenación por Membrana Extracorpórea/efectos adversos , Enfermedad Crítica/terapia , Cefalosporinas/farmacocinética , Antibacterianos/farmacocinética , Cefiderocol
3.
Front Pharmacol ; 13: 833189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370708

RESUMEN

Beta-lactams remain a critical member of our antibiotic armamentarium and are among the most commonly prescribed antibiotic classes in the inpatient setting. For these agents, the percentage of time that the free concentration remains above the minimum inhibitory concentration (%fT > MIC) of the pathogen has been shown to be the best predictor of antibacterial killing effects. However, debate remains about the quantity of fT > MIC exposure needed for successful clinical response. While pre-clinical animal based studies, such as the neutropenic thigh infection model, have been widely used to support dosing regimen selection for clinical development and susceptibility breakpoint evaluation, pharmacodynamic based studies in human patients are used validate exposures needed in the clinic and for guidance during therapeutic drug monitoring (TDM). For the majority of studied beta-lactams, pre-clinical animal studies routinely demonstrated the fT > MIC should exceed approximately 40-70% fT > MIC to achieve 1 log reductions in colony forming units. In contrast, clinical studies tend to suggest higher exposures may be needed, but tremendous variability exists study to study. Herein, we will review and critique pre-clinical versus human-based pharmacodynamic studies aimed at determining beta-lactam exposure thresholds, so as to determine which targets may be best suited for optimal dosage selection, TDM, and for susceptibility breakpoint determination. Based on our review of murine and clinical literature on beta-lactam pharmacodynamic thresholds, murine based targets specific to each antibiotic are most useful during dosage regimen development and susceptibility breakpoint assessment, while a range of exposures between 50 and 100% fT > MIC are reasonable to define the beta-lactam TDM therapeutic window for most infections.

4.
Antiviral Res ; 164: 106-122, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742841

RESUMEN

The alphaviral nonstructural protein 2 (nsP2) cysteine proteases (EC 3.4.22.-) are essential for the proteolytic processing of the nonstructural (ns) polyprotein and are validated drug targets. A common secondary role of these proteases is to antagonize the effects of interferon (IFN). After delineating the cleavage site motif of the Venezuelan equine encephalitis virus (VEEV) nsP2 cysteine protease, we searched the human genome to identify host protein substrates. Here we identify a new host substrate of the VEEV nsP2 protease, human TRIM14, a component of the mitochondrial antiviral-signaling protein (MAVS) signalosome. Short stretches of homologous host-pathogen protein sequences (SSHHPS) are present in the nonstructural polyprotein and TRIM14. A 25-residue cyan-yellow fluorescent protein TRIM14 substrate was cleaved in vitro by the VEEV nsP2 protease and the cleavage site was confirmed by tandem mass spectrometry. A TRIM14 cleavage product also was found in VEEV-infected cell lysates. At least ten other Group IV (+)ssRNA viral proteases have been shown to cleave host proteins involved in generating the innate immune responses against viruses, suggesting that the integration of these short host protein sequences into the viral protease cleavage sites may represent an embedded mechanism of IFN antagonism. This interference mechanism shows several parallels with those of CRISPR/Cas9 and RNAi/RISC, but with a protease recognizing a protein sequence common to both the host and pathogen. The short host sequences embedded within the viral genome appear to be analogous to the short phage sequences found in a host's CRISPR spacer sequences. To test this algorithm, we applied it to another Group IV virus, Zika virus (ZIKV), and identified cleavage sites within human SFRP1 (secreted frizzled related protein 1), a retinal Gs alpha subunit, NT5M, and Forkhead box protein G1 (FOXG1) in vitro. Proteolytic cleavage of these proteins suggests a possible link between the protease and the virus-induced phenotype of ZIKV. The algorithm may have value for selecting cell lines and animal models that recapitulate virus-induced phenotypes, predicting host-range and susceptibility, selecting oncolytic viruses, identifying biomarkers, and de-risking live virus vaccines. Inhibitors of the proteases that utilize this mechanism may both inhibit viral replication and alleviate suppression of the innate immune responses.


Asunto(s)
Proteasas de Cisteína/metabolismo , Virus de la Encefalitis Equina Venezolana/enzimología , Proteínas Virales/metabolismo , Virus Zika/enzimología , 5'-Nucleotidasa/metabolismo , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Encefalomielitis Equina Venezolana/virología , Factores de Transcripción Forkhead/metabolismo , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteolisis , Replicación Viral/efectos de los fármacos , Virus Zika/patogenicidad , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA