Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 322(6): C1271-C1278, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35544698

RESUMEN

Glycosaminoglycans (GAGs) are complex linear polysaccharides, which are covalently attached to core proteins (except for hyaluronan) to form proteoglycans. They play key roles in the organization of the extracellular matrix, and at the cell surface where they contribute to the regulation of cell signaling and of cell adhesion. To explore the mechanisms and pathways underlying their functions, we have generated an expanded dataset of 4,290 interactions corresponding to 3,464 unique GAG-binding proteins, four times more than the first version of the GAG interactome (Vallet, Clerc, and Ricard-Blum. J Histochem Cytochem 69: 93-104, 2021). The increased size of the GAG network is mostly due to the addition of GAG-binding proteins captured from cell lysates and biological fluids by affinity chromatography and identified by mass spectrometry. We review here the interaction repertoire of natural GAGs and of synthetic sulfated hyaluronan, the specificity and molecular functions of GAG-binding proteins, and the biological processes and pathways they are involved in. This dataset is also used to investigate the differences between proteins binding to iduronic acid-containing GAGs (dermatan sulfate and heparin/heparan sulfate) and those interacting with GAGs lacking iduronic acid (chondroitin sulfate, hyaluronan, and keratan sulfate).


Asunto(s)
Glicosaminoglicanos , Ácido Idurónico , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Ácido Hialurónico , Proteoglicanos/metabolismo
2.
Curr Protoc ; 1(4): e47, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33794052

RESUMEN

The interaction database MatrixDB reports protein-protein and protein-glycosaminoglycan interactions in human, mammalian, and model organisms, involving at least one extracellular matrix (ECM) constituent, namely full-length proteins, ECM multimeric proteins considered as stable complexes, proteoglycans, glycosaminoglycans (GAGs), and bioactive fragments called matricryptins, which are released upon limited proteolysis of ECM proteins. The current version of MatrixDB (as of October 2020) contains 106,543 experimentally supported interactions, with all types of biomolecules combined. MatrixDB is the only database focusing on the curation of ECM protein and GAG interactions. The iNavigator integrated in MatrixDB allows users to build interaction networks online and to filter them according to expression data, quantitative proteomics data, or interaction detection methods. MatrixDB belongs to the International Molecular Exchange (IMEx) consortium, and uses its curation rules to capture interaction data, which are available in standardized exchange formats according to the Human Proteome Organization-Proteomics Standards Initiative (HUPO-PSI). © 2021 Wiley Periodicals LLC. Basic Protocol 1: Browse MatrixDB Basic Protocol 2: Create a list of biomolecules of interest to build interaction networks Basic Protocol 3: Build and export interaction networks of selected biomolecules using the iNavigator Basic Protocol 4: Build specific interaction networks using the iNavigator widgets Basic Protocol 5: Generate 3D models of glycosaminoglycan oligosaccharides using the GAG Builder tool.


Asunto(s)
Glicosaminoglicanos , Mapas de Interacción de Proteínas , Animales , Bases de Datos de Proteínas , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos
3.
Cancers (Basel) ; 13(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383846

RESUMEN

The members of the lysyl oxidase (LOX) family are amine oxidases, which initiate the covalent cross-linking of the extracellular matrix (ECM), regulate ECM stiffness, and contribute to cancer progression. The aim of this study was to build the first draft of the interactome of the five members of the LOX family in order to determine its molecular functions, the biological and signaling pathways mediating these functions, the biological processes it is involved in, and if and how it is rewired in cancer. In vitro binding assays, based on surface plasmon resonance and bio-layer interferometry, combined with queries of interaction databases and interaction datasets, were used to retrieve interaction data. The interactome was then analyzed using computational tools. We identified 31 new interactions and 14 new partners of LOXL2, including the α5ß1 integrin, and built an interactome comprising 320 proteins, 5 glycosaminoglycans, and 399 interactions. This network participates in ECM organization, degradation and cross-linking, cell-ECM interactions mediated by non-integrin and integrin receptors, protein folding and chaperone activity, organ and blood vessel development, cellular response to stress, and signal transduction. We showed that this network is rewired in colorectal carcinoma, leading to a switch from ECM organization to protein folding and chaperone activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA