Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Toxicol Environ Health A ; 87(15): 616-629, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38721962

RESUMEN

Agriculture has gained increasing importance in response to the continuous growth of the world population and constant need for food. To avoid production losses, farmers commonly use pesticides. Mancozeb is a fungicide used in agriculture as this compound is effective in combating fungi that harm crops. However, this fungicide may also produce damage to non-target organisms present in soil and water. Therefore, this study aimed to investigate the influence of exposure to mancozeb on survival rate, locomotor activity, behavior, and oxidative status utilizing adult zebrafish (Danio rerio) as a model following exposure to environmentally relevant concentrations of this pesticide. The experimental groups were negative control, positive control, and mancozeb (0.3; 1.02; 3.47; 11.8 or 40 µg/L). Zebrafish were exposed to the respective treatments for 96 hr. Exposure to mancozeb did not markedly alter survival rate and oxidative status of Danio rerio. At a concentration of 11.8 µg/L, the fungicide initiated changes in locomotor pattern of the animals. The results obtained suggest that the presence of mancozeb in the environment might produce locomotor alterations in adult zebrafish, which subsequently disrupt the animals' innate defense mechanisms. In nature, this effect attributed to mancozeb on non-target organisms might result in adverse population impacts and ecological imbalance.


Asunto(s)
Fungicidas Industriales , Maneb , Pez Cebra , Zineb , Animales , Maneb/toxicidad , Zineb/toxicidad , Fungicidas Industriales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga
2.
Toxicol Appl Pharmacol ; 473: 116599, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37328116

RESUMEN

Studies have indicated that glyphosate induces endocrine disruption and may adversely affect the male reproductive system. However, evidence of its effects on ovarian function is poorly understood so far, making further studies necessary on the mechanisms of the glyphosate toxicity in the female reproductive system. The aim of this work was to evaluate the effect of a subacute exposure (28 days) to the glyphosate-based formulation Roundup® (1.05, 10.5 and 105 µg/kg b.w. of glyphosate) on steroidogenesis, oxidative stress, systems involved in cell redox control and histopathological parameters in rat ovaries. Hence we quantify plasma estradiol and progesterone by chemiluminescence; non-protein thiol levels, TBARS, superoxide dismutase and catalase activity by spectrophotometry; gene expression of steroidogenic enzymes and redox systems by real-time PCR; and ovarian follicles by optical microscopy. Our results demonstrated that oral exposure increased progesterone levels and the mRNA expression of 3ß-hydroxysteroid dehydrogenase. Histopathological analysis revealed a decrease in the number of primary follicles and an increase in the number of corpus luteum in rats exposed to Roundup®. An imbalance of the oxidative status was also evidenced by decreasing the catalase activity at all groups exposed to the herbicide. Increased lipid peroxidation and gene expression of glutarredoxin and decreased of glutathione reductase were also observed. Our results indicate that Roundup® causes endocrine disruption of hormones related to female fertility and reproduction and changes the oxidative status by altering antioxidant activity, inducing lipid peroxidation, as well as changing the gene expression of the glutathione-glutarredoxin system in rat ovaries.


Asunto(s)
Herbicidas , Ovario , Ratas , Masculino , Femenino , Animales , Progesterona , Catalasa/genética , Catalasa/metabolismo , Herbicidas/toxicidad , Glutarredoxinas/farmacología , Antioxidantes/farmacología , Glutatión/metabolismo , Estradiol/farmacología , Expresión Génica , Glifosato
3.
Neurochem Res ; 48(6): 1889-1899, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36729312

RESUMEN

Epilepsy is characterized by the manifestation of spontaneous and recurrent seizures. The high prevalence of comorbidities associated with epilepsy, such as cognitive dysfunction, affects the patients quality of life. Adenosine signaling modulation might be an effective alternative to control seizures and epilepsy-associated comorbidities. This study aimed to verify the role of adenosine modulation on the seizure development and cognitive impairment induced by pentylenetetrazole (PTZ) in zebrafish. At first, animals were submitted to a training session in the inhibitory avoidance test and, after 10 min, they received an intraperitoneal injection of valproate, adenosine A1 receptor agonist cyclopentyladenosine (CPA), adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), adenosine A2A receptor antagonist ZM 241385, adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nony1)-adenine hydrochloride (EHNA) or the nucleoside transporter inhibitor dipyridamole. Thirty min after the intraperitoneal injection, the animals were exposed to 7.5 mM PTZ for 10 min, where they were evaluated for latency to reach the seizure stages (I, II, and III). Finally, 24 h after the training session, the animals were submitted to the inhibitory avoidance test to verify their cognitive performance during the test session. Valproate, CPA, and EHNA showed antiseizure effects and prevented the memory impairment induced by PTZ exposure. DPCPX, ZM 241385, and dipyridamole pretreatments caused no changes in seizure development; however, these drugs prevented memory impairment without altering locomotion. Our results reinforce the antiseizure effects of adenosine signaling and support the idea that the involvement of adenosine in memory processes may be a target for preventive strategies against cognitive impairment associated with epilepsy.


Asunto(s)
Epilepsia , Pentilenotetrazol , Animales , Pentilenotetrazol/toxicidad , Adenosina/farmacología , Pez Cebra , Ácido Valproico/efectos adversos , Calidad de Vida , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Dipiridamol/efectos adversos
4.
Ecotoxicol Environ Saf ; 122: 440-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386335

RESUMEN

Copper is a heavy metal found at relatively high concentrations in surface waters around the world. Copper is a micronutrient at low concentrations and is essential to several organisms. At higher concentrations copper can become toxic, which reveal the importance of studying the toxic effects of this metal on the aquatic life. Thus, the objective of this study was to evaluate the toxic effects of copper on the behavior and biochemical parameters of zebrafish (Danio rerio). Zebrafish were exposed for 24h at a concentration of 0.006 mg/L Cu. After the exposure period, behavioral profile of animals was recorded through 6 min using two different apparatuses tests: the Novel Tank and the Light-Dark test. After behavioral testing, animals were euthanized with a solution of 250 mg/L of tricaine (MS-222). Brain, muscle, liver and gills were extracted for analysis of parameters related to oxidative stress and accumulation of copper in these tissues. Acetylcholinesterase (AChE) activity was determined in brain and muscle. Results showed acute exposure to copper induces significant changes in behavioral profile of zebrafish by changing locomotion and natural tendency to avoid brightly lit area. On the other hand, there were no significant effects on parameters related to oxidative stress. AChE activity decreased significantly in zebrafish muscle, but there were no significant changes in cerebral AChE activity. Copper levels in tissues did not increase significantly compared to the controls. Taken together, these results indicate that a low concentration of copper can acutely affect behavioral profile of adult zebrafish which could be partially related to an inhibition on muscle AChE activity. These results reinforce the need of additional tests to establishment of safe copper concentrations to aquatic organisms and the importance of behavioral parameters in ecotoxicological studies.


Asunto(s)
Acetilcolinesterasa/metabolismo , Conducta Animal/efectos de los fármacos , Cobre/toxicidad , Músculos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Femenino , Branquias/efectos de los fármacos , Branquias/enzimología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Actividad Motora/efectos de los fármacos , Músculos/enzimología , Estrés Oxidativo/efectos de los fármacos , Pez Cebra/crecimiento & desarrollo
5.
Behav Brain Res ; 466: 114981, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38580198

RESUMEN

This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.


Asunto(s)
Reacción de Prevención , Berberina , Hesperidina , Pentilenotetrazol , Convulsiones , Pez Cebra , Animales , Pentilenotetrazol/farmacología , Berberina/farmacología , Berberina/administración & dosificación , Hesperidina/farmacología , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Reacción de Prevención/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Masculino , Modelos Animales de Enfermedad , Convulsivantes/farmacología , Larva/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Anticonvulsivantes/farmacología
6.
Front Pharmacol ; 13: 833227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126165

RESUMEN

Zebrafish is a prominent vertebrate model, with many of its advantages related to its development, life cycle, and translational ability. While a great number of behavioral phenotypes and tasks to evaluate them are available, longitudinal studies across zebrafish life stages are scarce and made challenging because of the differences between protocols and endpoints assessed at each life stage. In this mini review, we highlight the relevance that longitudinal studies could have for neurobehavioral pharmacology using this model. We also present possible strategies to standardize behavior endpoints in domains related to human diseases throughout the life cycle, especially between larvae and adult fish. Furthermore, we discuss the remaining difficulties of these analyses and explore future advances needed to bridge this knowledge gap.

7.
Behav Brain Res ; 432: 113974, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35738339

RESUMEN

Epilepsy is characterized by the occurrence of seizures, and the high prevalence of epilepsy-associated comorbidities affects the quality of patients' life. We investigated the effects of pentylenetetrazole (PTZ) exposure in zebrafish cognitive performance on inhibitory avoidance test. The animals were exposed to 7.5 mM PTZ for 10 min, in the acquisition (before training) and in the consolidation memory phases (after training). In the acquisition phase, the animals were submitted to PTZ-induced seizures and trained in periods of 1, 24, or 48 h after exposure, and 24 h after training were tested. In the consolidation phase, animals were trained and exposed to PTZ 10 min after training and were tested 24 h later. Control groups in periods of 1, 24, or 48 h before or 10 min after training showed a significantly increased latency to enter the dark compartment. The latencies between training and test sessions did not differ in PTZ groups of animals exposed and trained 1 and 24 h or exposed to PTZ 10 min after training. At 48 h, animals exposed to PTZ showed an increased latency to enter the dark compartment. Animals exposed to PTZ and trained 1 h later increased the traveled distance, when compared to the control group. Traveled distance did not differ in animals that were exposed to PTZ and trained 24 and 48 h, or 10 min after training. Our findings indicate that PTZ causes a cognitive deficit in the pre-and post-training phase, allowing us to explore the influence of seizures at different memory phases.


Asunto(s)
Epilepsia , Pentilenotetrazol , Animales , Anticonvulsivantes/farmacología , Memoria , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente , Pez Cebra
8.
Eur J Pharmacol ; 908: 174342, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265297

RESUMEN

Epilepsy affects about 65 million people in the world, which makes this disease a public health problem. In addition to the incidence of recurrent seizures, this neurological condition also culminates in cognitive, psychological, behavioral, and social consequences to the patients. Epilepsy treatment is based on the use of drugs that aim to inhibit repetitive neuronal discharges, and consequently, the recurrence of seizures. However, despite the large number of antiepileptic drugs currently available, about 30-40% of patients with epilepsy do not respond satisfactorily to treatments. Therefore, the investigation of new therapeutic alternatives for epilepsy becomes relevant, especially the search for new compounds with anticonvulsant properties. The therapeutic potential of plant-derived bioactive compounds has been a target for alternative treatments for epilepsy. The use of animal models for drug screening, such as zebrafish, contributes to a better understanding of the mechanisms involved in seizures and for investigating methods and alternative treatments to decrease seizure incidence. The sensitivity of zebrafish to chemoconvulsants and its use in genetic approaches reinforces the contribution of this animal to epilepsy research. Moreover, we summarize advances in zebrafish-based studies that focus on plant-derived bioactive compounds with potential antiseizure properties, contributing to the screening of new drugs for epilepsy treatment.


Asunto(s)
Anticonvulsivantes , Animales , Humanos , Convulsiones
9.
Neurochem Int ; 135: 104710, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32105720

RESUMEN

Schizophrenia is a neuropsychiatric condition that reaches around 1% of people worldwide. Because taurine exerts a neuroprotective role in the brain, this molecule is a promising candidate to reduce schizophrenia-like symptoms. Here, we investigated a possible neuroprotective role of taurine against MK-801-induced memory deficit and hyperlocomotion in zebrafish using the inhibitory avoidance task and the novel tank diving test, respectively. First, we assessed the influence of different MK-801 doses (0.1, 0.3, 0.5, 1 and 2 mg/kg, i.p.) on memory consolidation. Although all MK-801 doses tend to reduce the retention index, only 2 mg/kg MK-801 showed robust amnesic effects. Then, we evaluated whether taurine pretreatments (42, 150 and 400 mg/L for 60 min) prevent MK-801-induced cognitive impairment. Immediately after the training, animals were exposed to non-chlorinated water or taurine and subsequently challenged with 2 mg/kg MK-801, i.p. The test session was performed 24 h after training. Although taurine alone did not change memory retention when compared with control, taurine pretreatments prevented MK-801-induced memory deficit. Importantly, no locomotor changes were observed 24 h after the training session. In the novel tank diving test, MK-801 induced hyperlocomotion and disrupted vertical activity, while 400 mg/L taurine pretreatment prevented these effects. Overall, our novel findings indicate a neuroprotective role of taurine against MK-801-induced memory deficit and hyperlocomotion, reinforcing the growing utility of zebrafish models to investigate the beneficial effects of different compounds against glutamate excitotoxicity.


Asunto(s)
Maleato de Dizocilpina/toxicidad , Trastornos Neurológicos de la Marcha/prevención & control , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Taurina/uso terapéutico , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/toxicidad , Femenino , Trastornos Neurológicos de la Marcha/inducido químicamente , Trastornos Neurológicos de la Marcha/fisiopatología , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/fisiopatología , Fármacos Neuroprotectores/farmacología , Taurina/farmacología , Pez Cebra
10.
Artículo en Inglés | MEDLINE | ID: mdl-31981718

RESUMEN

Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Trastornos Relacionados con Sustancias/metabolismo , Pez Cebra/metabolismo , Analgésicos Opioides/efectos adversos , Animales , Cannabinoides/efectos adversos , Etanol/efectos adversos , Humanos , Nicotina/efectos adversos , Trastornos Relacionados con Sustancias/genética , Trastornos Relacionados con Sustancias/psicología , Pez Cebra/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-31112733

RESUMEN

Anxiety-related disorders are severe psychiatric conditions that involve complex physiological and behavioral maladaptive responses. The use of conspecific alarm substance (CAS) for inducing anxiety-like behaviors in fish species provides important translational insights of how aversive conditions modulate neurobehavioral functions. Because nicotine may elicit anxiolytic-like responses, here we investigated whether acute nicotine exposure prevents CAS-induced anxiogenic-like behaviors in zebrafish. We used both novel tank and light-dark tests as two well-established paradigms for measuring anxiety-like phenotypes. Fish were individually exposed to 1 mg/L nicotine or non-chlorinated water for 3 min and then transferred to other tanks in the absence or presence of 3.5 mL/L CAS for 5 min. Later, the behavior of fish was tested in the novel tank test or in the light-dark preference test. As expected, CAS triggered aversive behaviors by increasing bottom-dwelling, freezing, erratic movements, scototaxis, and risk assessment episodes. Nicotine alone elicited anxiolytic-like behaviors since it increased the time spent in the top, as well as the average duration of entry in the lit compartment. Moreover, nicotine pretreatment prevented CAS-induced aversive responses without changing locomotion, suggesting that anxiolysis could play a role, at least in part, to the behavioral effects of nicotine observed here. Overall, these novel findings show the beneficial effects of nicotine on anxiogenic responses in zebrafish. We also reinforce the practical advantages of this aquatic species to explore the relieving properties of nicotine, as well as to understand the neurobiological bases involved in anxiety-related disorders and associated therapeutic targets.


Asunto(s)
Ansiedad/prevención & control , Modelos Animales de Enfermedad , Nicotina/farmacología , Pez Cebra/fisiología , Animales , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Señales (Psicología) , Femenino , Locomoción/efectos de los fármacos , Masculino
12.
Artículo en Inglés | MEDLINE | ID: mdl-30880191

RESUMEN

Ethanol is one of the most consumed substance worldwide that impairs learning and memory processes, resulting in amnesia or blackout. Due to the genetic conservation, rich behavioral repertoire, and high pharmacological tractability, the zebrafish (Danio rerio) has emerged as a powerful model organism for assessing preventive strategies against the noxious effects of ethanol in vertebrates. Here, we used an inhibitory avoidance apparatus to investigate the potential preventive effects of taurine in a novel ethanol-induced amnesia model in zebrafish. The experimental tank consisted of two compartments of the same size, one dark and another white, which were separated by a guillotine-type door. Three parallel metal bars coupled to an electrical stimulator were connected on each lateral wall of the dark compartment as electrical stimulus source. Differences on the latency to enter the dark compartment were used as retention indexes. A mild electric shock (125 mA, 3 ±â€¯0.2 V) at 10 and 1000 Hz did not promote significant learning, while 100 Hz facilitated memory retention. Posttraining administration of MK-801 blocked this response, reinforcing the predictive validity of the test. Treatments were performed immediately after the training session using the 100 Hz frequency. Animals were exposed to water (control), taurine (42, 150, 400 mg/L), ethanol (0.25%, 1.0% v/v) or taurine plus ethanol to assess the effects on memory consolidation. Test session was performed 24 h following training. Ethanol at 0.25% did not affect memory consolidation, but 1.0% impaired memory without changing locomotion. Although taurine alone did not modulate learning, all concentrations tested exerted prevented ethanol-induced memory impairment. Overall, we describe a novel ethanol-induced blackout model, where a high ethanol concentration acutely impairs memory consolidation in zebrafish. Moreover, since taurine showed a protective role, we reinforce the growing utility of zebrafish models for assessing the deleterious effects of ethanol and potential therapeutic strategies.


Asunto(s)
Amnesia/inducido químicamente , Etanol/efectos adversos , Consolidación de la Memoria/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Taurina/farmacología , Amnesia/prevención & control , Animales , Reacción de Prevención/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Masculino , Destreza Motora/efectos de los fármacos , Pez Cebra
13.
Environ Sci Pollut Res Int ; 26(23): 23555-23570, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203546

RESUMEN

Iron (Fe) and manganese (Mn) are metals commonly found at high concentrations in underground water. These metals are essential for the good functioning of living organisms, but high concentrations lead to imbalance, potentiating the appearance of pathologies. This study aimed to evaluate the effect of exposure to naturally occurring metals in groundwater, using zebrafish (Danio rerio) as an experimental model. Thus, zebrafish were exposed to Fe (0.8 and 1.3 mg/L), Mn (0.2 and 0.4 mg/L), and groundwater collected from deep tube wells with Fe and Mn (Fe 0.8/Mn 0.2 mg/L and Fe 1.3/Mn 0.4 mg/L) for 30 days. Bioaccumulation of these metals has been demonstrated in the livers and muscles of zebrafish. Acetylcholinesterase activity changed only in zebrafish muscles in all groups. Sulfhydryl levels changed mainly in the group Mn 0.4. SOD/CAT ratio decreased in the groups Fe 0.8 and 1.3, Mn 0.4, and Fe 0.8/Mn 0.4. An increase in the frequency of micronucleus in all groups was shown as a consequence of these changes. Behavioral parameters (time and distance traveled, mean speed, turn angle, latency, and number of crossings between compartments) have also changed, mainly in the groups Fe 1.3, Mn 0.4, and Fe 1.3/Mn 0.4. Therefore, long-term exposure to Fe and Mn, even at not so high concentrations, may cause biochemical, genotoxic, and behavioral changes in zebrafish.


Asunto(s)
Hierro/toxicidad , Manganeso/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología , Animales , Daño del ADN , Agua Subterránea/química , Hierro/análisis , Hígado/efectos de los fármacos , Manganeso/análisis , Músculos/química , Contaminantes Químicos del Agua/análisis
14.
Sci Rep ; 8(1): 2645, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29422541

RESUMEN

Epilepsy is one of the most common neurological diseases, and current antiepileptic drugs fail to suppress seizure occurrence in around one third of epileptic patients. Curcumin is a phytochemical with promising effects on epilepsy treatment. However, its application has been hindered by its low bioavailability. In order to improve curcumin's anti-seizure properties, increasing its bioavailability, here we proposed to micronize the compound through supercritical carbon dioxide processing, a suitable green chemistry technique to prepare and modify material properties. Here we investigated the anti-seizure potential of the classical antiepileptic drug valproate, curcumin in its natural state, and micronized curcumin in a PTZ-induced seizure model in zebrafish (Danio rerio). Concerning seizure development, valproate, curcumin and micronized curcumin showed protective effects, slowing seizure development both in larvae and adult animals. Nevertheless, considering the occurrence of the tonic-clonic seizure stage, only valproate and micronized curcumin reduced it, both in larvae and adult zebrafish, unlike non-processed curcumin. Our obtained results are very promising, since micronized curcumin showed effects that are similar to a classic antiepileptic drug, reducing seizure occurrence and slowing seizure progression.


Asunto(s)
Curcumina/farmacocinética , Composición de Medicamentos/métodos , Epilepsia/tratamiento farmacológico , Animales , Anticonvulsivantes/farmacología , Disponibilidad Biológica , Curcumina/farmacología , Curcumina/uso terapéutico , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Convulsiones/inducido químicamente , Ácido Valproico/farmacocinética , Ácido Valproico/farmacología , Pez Cebra
15.
Environ Sci Pollut Res Int ; 25(35): 35322-35329, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30341761

RESUMEN

Jaboticaba Plinia peruviana (Poir.) Govaerts is a Brazilian berry that presents high levels of polyphenols, which may play a key role in preventing cytotoxic and genotoxic effects of harmful agents. Although copper is an essential micronutrient that plays an important role in organisms, high copper concentrations may trigger toxicity to animals and plants. Here, we investigated whether Plinia peruviana hydroalcoholic extract prevents copper-induced cytotoxicity in Allium cepa root cells. Five different anthocyanins and phenolic compounds were identified in Plinia peruviana extract. Importantly, the exposure to 1.53 mg/L copper for 24 h impaired mitotic index, as well as increased mitosis disturbances and triggered DNA damage. Pre-incubation with Plinia peruviana extract (0.25 g/L and 0.75 g/L) for 3 h prevented copper-induced changes in the mitotic index and reduced the number of abnormal cells. In conclusion, we suggest that Plinia peruviana peel extract has protective effects against cellular and genetic disturbances induced by copper.


Asunto(s)
Cobre/toxicidad , Daño del ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Myrtaceae/química , Cebollas/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antocianinas/aislamiento & purificación , Antocianinas/farmacología , Brasil , Frutas/química , Índice Mitótico , Modelos Teóricos , Cebollas/citología , Cebollas/genética , Extractos Vegetales/aislamiento & purificación , Polifenoles/aislamiento & purificación , Polifenoles/farmacología
16.
Environ Sci Pollut Res Int ; 25(12): 11703-11715, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29442306

RESUMEN

Oxidative stress and DNA damage are involved in the glyphosate-based herbicide toxicity. Uncaria tomentosa (UT; Rubiaceae) is a plant species from South America containing bioactive compounds with known beneficial properties. The objective of this work was to evaluate the antioxidant and antigenotoxic potential of UT extract in a model of acute exposure to glyphosate-Roundup® (GR) in zebrafish (Danio rerio). We showed that UT (1.0 mg/mL) prevented the decrease of brain total thiols, the increase of lipid peroxidation in both brain and liver, and the decrease of liver GPx activity caused after 96 h of GR (5.0 mg/L) exposure. In addition, UT partially protected against the increase of micronucleus frequency induced by GR exposure in fish brain. Overall, our results indicate that UT protects against damage induced by a glyphosate-based herbicide by providing antioxidant and antigenotoxic effects, which may be related to the phenolic compounds identified in the extract.


Asunto(s)
Antioxidantes/farmacología , Uña de Gato/química , Glicina/análogos & derivados , Herbicidas/antagonistas & inhibidores , Extractos Vegetales/farmacología , Pez Cebra , Animales , Daño del ADN , Femenino , Glicina/antagonistas & inhibidores , Glicina/toxicidad , Herbicidas/toxicidad , Peroxidación de Lípido , Hígado/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , América del Sur , Glifosato
17.
Neurotoxicol Teratol ; 44: 62-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24893294

RESUMEN

Animal behaviour is the interaction between environment and an individual organism, which also can be influenced by its neighbours. Variations in environmental conditions, as those caused by contaminants, may lead to neurochemical impairments altering the pattern of the behavioural repertoire of the species. Atrazine (ATZ) is an herbicide widely used in agriculture that is frequently detected in surface water, affecting non-target species. The zebrafish is a valuable model organism to assess behavioural and neurochemical effects of different contaminants since it presents a robust behavioural repertoire and also all major neurotransmitter systems described for mammalian species. The goal of this study was to evaluate the effects of subchronic ATZ exposure in defensive behaviours of zebrafish (shoaling, thigmotaxis, and depth preference) using the split depth tank. Furthermore, to investigate a putative role of cholinergic signalling on ATZ-mediated effects, we tested whether this herbicide alters acetylcholinesterase (AChE) activity in brain and muscle preparations. Fish were exposed to ATZ for 14days and the following groups were tested: control (0.2% acetone) and ATZ (10 and 1000µg/L). The behaviour of four animals in the same tank was recorded for 6min and biological samples were prepared. Our results showed that 1000µg/L ATZ significantly increased the inter-fish distance, as well as the nearest and farthest neighbour distances. This group also presented an increase in the shoal area with decreased social interaction. No significant differences were detected for the number of animals in the shallow area, latency to enter the shallow and time spent in shallow and deep areas of the apparatus, but the ATZ 1000 group spent significantly more time near the walls. Although ATZ did not affect muscular AChE, it significantly reduced AChE activity in brain. Exposure to 10µg/L ATZ did not affect behaviour or AChE activity. These data suggest that ATZ impairs defensive behaviours of zebrafish, which could be related to its action on brain cholinergic neurotransmission. Moreover, the use of the split depth tank could be an alternative strategy to assess group behaviour and depth preference after exposure to chemical compounds.


Asunto(s)
Acetilcolinesterasa/metabolismo , Atrazina/toxicidad , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Herbicidas/toxicidad , Animales , Atrazina/administración & dosificación , Encéfalo/enzimología , Herbicidas/administración & dosificación , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA