Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Allergy ; 78(6): 1639-1653, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36721963

RESUMEN

BACKGROUND: Severe acute respiratory syndrome corona virus (SARS-CoV-2) infection frequently causes severe and prolonged disease but only few specific treatments are available. We aimed to investigate safety and efficacy of a SARS-CoV-2-specific siRNA-peptide dendrimer formulation MIR 19® (siR-7-EM/KK-46) targeting a conserved sequence in known SARS-CoV-2 variants for treatment of COVID-19. METHODS: We conducted an open-label, randomized, controlled multicenter phase II trial (NCT05184127) evaluating safety and efficacy of inhaled siR-7-EM/KK-46 (3.7 mg and 11.1 mg/day: low and high dose, respectively) in comparison with standard etiotropic drug treatment (control group) in patients hospitalized with moderate COVID-19 (N = 52 for each group). The primary endpoint was the time to clinical improvement according to predefined criteria within 14 days of randomization. RESULTS: Patients from the low-dose group achieved the primary endpoint defined by simultaneous achievement of relief of fever, normalization of respiratory rate, reduction of coughing, and oxygen saturation of >95% for 48 h significantly earlier (median 6 days; 95% confidence interval [CI]: 5-7, HR 1.75, p = .0005) than patients from the control group (8 days; 95% CI: 7-10). No significant clinical efficacy was observed for the high-dose group. Adverse events were reported in 26 (50.00%), 25 (48.08%), and 28 (53.85%) patients from the low-, high-dose and control group, respectively. None of them were associated with siR-7-EM/KK-46. CONCLUSIONS: siR-7-EM/KK-46, a SARS-CoV-2-specific siRNA-peptide dendrimer formulation is safe, well tolerated and significantly reduces time to clinical improvement in patients hospitalized with moderate COVID-19 compared to standard therapy in a randomized controlled trial.


Asunto(s)
COVID-19 , Dendrímeros , Humanos , SARS-CoV-2 , ARN Interferente Pequeño , Resultado del Tratamiento , Péptidos/uso terapéutico
2.
Allergy ; 76(9): 2840-2854, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837568

RESUMEN

BACKGROUND: First vaccines for prevention of Coronavirus disease 2019 (COVID-19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti-SARS-CoV-2 effect of siRNA both in vitro and in vivo. METHODS: To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS-CoV-2 genes fused with the firefly luciferase reporter gene and SARS-CoV-2-infected cells was used. The most potent siRNA, siR-7, was modified by Locked nucleic acids (LNAs) to obtain siR-7-EM with increased stability and was formulated with the peptide dendrimer KK-46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation - siR-7-EM/KK-46. Using the Syrian Hamster model for SARS-CoV-2 infection the antiviral capacity of siR-7-EM/KK-46 complex was evaluated. RESULTS: We identified the siRNA, siR-7, targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA-modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR-7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR-7-EM/KK-46 in vivo. CONCLUSIONS: Thus, we developed a therapeutic strategy for COVID-19 based on inhalation of a modified siRNA-peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID-19 patients.


Asunto(s)
COVID-19 , Dendrímeros , Animales , Antivirales , Humanos , Péptidos/genética , ARN Interferente Pequeño/genética , ARN Viral , SARS-CoV-2
3.
J Infect ; 89(5): 106288, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341405

RESUMEN

BACKGROUND: Despite the success of first-generation COVID-19 vaccines targeting the spike (S) protein, emerging SARS-CoV-2 variants have led to immune escape, reducing the efficacy of these vaccines. Additionally, some individuals are unable to mount an effective immune response to S protein-based vaccines. This has created a need for alternative vaccine strategies that are less susceptible to mutations and capable of providing broad and durable protection. This study aimed to evaluate the efficacy and safety of a novel COVID-19 vaccine based on the full-length recombinant nucleocapsid (N) protein of SARS-CoV-2. METHODS: We conducted a prospective, multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial (NCT05726084) in Russia. Participants (n = 5229) were adults aged 18 years and older, with a BMI of 18.5-30 kg/m², and without significant clinical abnormalities. They were randomized in a 2:1 ratio to receive a single intramuscular dose of either the N protein-based vaccine (50 µg) or placebo. Randomization was done through block randomization, and masking was ensured by providing visually identical formulations of vaccine and placebo. The primary outcome was the incidence of symptomatic COVID-19 confirmed by PCR more than 15 days after vaccination within a 180-day observation period, analyzed on an intention-to-treat basis. FINDINGS: Between May 18, 2023, and August 9, 2023, 5229 participants were randomized, with 3486 receiving the vaccine and 1743 receiving the placebo. Eight cases of PCR-confirmed symptomatic COVID-19 occurred in the vaccine group (0.23%) compared to 27 cases in the placebo group (1.55%), yielding a vaccine efficacy of 85.2% (95% CI: 67.4-93.3; p < 0.0001). Adverse events were mostly mild and included local injection site reactions. There were no vaccine-related serious adverse events. INTERPRETATION: The N protein-based COVID-19 vaccine demonstrated significant efficacy and a favorable safety profile, suggesting it could be a valuable addition to the global vaccination effort, particularly in addressing immune escape variants and offering an alternative for those unable to respond to S protein-based vaccines. These results support the continued development and potential deployment of N protein-based vaccines in the ongoing fight against COVID-19.

4.
Vaccines (Basel) ; 11(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37112786

RESUMEN

The vast majority of SARS-CoV-2 vaccines which are licensed or under development focus on the spike (S) protein and its receptor binding domain (RBD). However, the S protein shows considerable sequence variations among variants of concern. The aim of this study was to develop and characterize a SARS-CoV-2 vaccine targeting the highly conserved nucleocapsid (N) protein. Recombinant N protein was expressed in Escherichia coli, purified to homogeneity by chromatography and characterized by SDS-PAGE, immunoblotting, mass spectrometry, dynamic light scattering and differential scanning calorimetry. The vaccine, formulated as a squalane-based emulsion, was used to immunize Balb/c mice and NOD SCID gamma (NSG) mice engrafted with human PBMCs, rabbits and marmoset monkeys. Safety and immunogenicity of the vaccine was assessed via ELISA, cytokine titer assays and CFSE dilution assays. The protective effect of the vaccine was studied in SARS-CoV-2-infected Syrian hamsters. Immunization induced sustainable N-specific IgG responses and an N-specific mixed Th1/Th2 cytokine response. In marmoset monkeys, an N-specific CD4+/CD8+ T cell response was observed. Vaccinated Syrian hamsters showed reduced lung histopathology, lower virus proliferation, lower lung weight relative to the body, and faster body weight recovery. Convacell® thus is shown to be effective and may augment the existing armamentarium of vaccines against COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA