Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Biol ; 18(2): e3000361, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32078631

RESUMEN

Sleep-active neurons depolarize during sleep to suppress wakefulness circuits. Wake-active wake-promoting neurons in turn shut down sleep-active neurons, thus forming a bipartite flip-flop switch. However, how sleep is switched on is unclear because it is not known how wakefulness is translated into sleep-active neuron depolarization when the system is set to sleep. Using optogenetics in Caenorhabditis elegans, we solved the presynaptic circuit for depolarization of the sleep-active RIS neuron during developmentally regulated sleep, also known as lethargus. Surprisingly, we found that RIS activation requires neurons that have known roles in wakefulness and locomotion behavior. The RIM interneurons-which are active during and can induce reverse locomotion-play a complex role and can act as inhibitors of RIS when they are strongly depolarized and as activators of RIS when they are modestly depolarized. The PVC command interneurons, which are known to promote forward locomotion during wakefulness, act as major activators of RIS. The properties of these locomotion neurons are modulated during lethargus. The RIMs become less excitable. The PVCs become resistant to inhibition and have an increased capacity to activate RIS. Separate activation of neither the PVCs nor the RIMs appears to be sufficient for sleep induction; instead, our data suggest that they act in concert to activate RIS. Forward and reverse circuit activity is normally mutually exclusive. Our data suggest that RIS may be activated at the transition between forward and reverse locomotion states, perhaps when both forward (PVC) and reverse (including RIM) circuit activity overlap. While RIS is not strongly activated outside of lethargus, altered activity of the locomotion interneurons during lethargus favors strong RIS activation and thus sleep. The control of sleep-active neurons by locomotion circuits suggests that sleep control may have evolved from locomotion control. The flip-flop sleep switch in C. elegans thus requires an additional component, wake-active sleep-promoting neurons that translate wakefulness into the depolarization of a sleep-active neuron when the worm is sleepy. Wake-active sleep-promoting circuits may also be required for sleep state switching in other animals, including in mammals.


Asunto(s)
Locomoción/fisiología , Neuronas/fisiología , Fases del Sueño/fisiología , Vigilia/fisiología , Animales , Nivel de Alerta/fisiología , Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Homeostasis , Interneuronas/metabolismo , Interneuronas/fisiología , Larva/fisiología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Optogenética
2.
Genesis ; 54(4): 212-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26833569

RESUMEN

Longitudinal analyses are crucial for understanding long-term processes such as development and behavioral rhythms. For a complete understanding of such processes, both organism-level observations as well as single-cell observations are necessary. Sleep is an example for a long-term process that is under developmental control. This behavioral state is induced by conserved sleep-active neurons, but little is known about how sleep neurons control the physiology of an animal systemically. In the nematode C. elegans, sleep induction crucially requires the single RIS interneuron to actively induce a developmentally regulated sleep behavior. Here, we used RIS-induced sleep as an example of how longitudinal analyses can be automated. We developed methods to analyze both behavior and neural activity in larva across the sleep-wake cycle. To image behavior, we used an improved DIC contrast to extract the head and detect the nose. To image neural activity, we used GCaMP3 expression in a small number of neurons including RIS combined with a neuron discrimination algorithm. Thus, we present a comprehensive platform for automatically analyzing behavior and neural activity in C. elegans exemplified by using RIS-induced sleep during C. elegans development.


Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas/fisiología , Análisis de la Célula Individual/métodos , Sueño/fisiología , Algoritmos , Animales , Automatización de Laboratorios , Conducta Animal , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Interneuronas/metabolismo , Larva/fisiología
3.
Hum Mol Genet ; 22(10): 1960-70, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23390136

RESUMEN

AnkyrinG, encoded by the ANK3 gene, is involved in neuronal development and signaling. It has previously been implicated in bipolar disorder and schizophrenia by association studies. Most recently, de novo missense mutations in this gene were identified in autistic patients. However, the causative nature of these mutations remained controversial. Here, we report inactivating mutations in the Ankyrin 3 (ANK3) gene in patients with severe cognitive deficits. In a patient with a borderline intelligence, severe attention deficit hyperactivity disorder (ADHD), autism and sleeping problems, all isoforms of the ANK3 gene, were disrupted by a balanced translocation. Furthermore, in a consanguineous family with moderate intellectual disability (ID), an ADHD-like phenotype and behavioral problems, we identified a homozygous truncating frameshift mutation in the longest isoform of the same gene, which represents the first reported familial mutation in the ANK3 gene. The causality of ANK3 mutations in the two families and the role of the gene in cognitive function were supported by memory defects in a Drosophila knockdown model. Thus we demonstrated that ANK3 plays a role in intellectual functioning. In addition, our findings support the suggested association of ANK3 with various neuropsychiatric disorders and illustrate the genetic and molecular relation between a wide range of neurodevelopmental disorders.


Asunto(s)
Ancirinas/genética , Mutación del Sistema de Lectura , Heterocigoto , Homocigoto , Trastornos Mentales/genética , Neurogénesis/genética , Trastornos del Sueño-Vigilia/genética , Adulto , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Masculino
4.
Hum Mol Genet ; 22(15): 3138-51, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23575228

RESUMEN

It is estimated that the human mitochondrial proteome consists of 1000-1500 distinct proteins. The majority of these support the various biochemical pathways that are active in these organelles. Individuals with an oxidative phosphorylation disorder of unknown cause provide a unique opportunity to identify novel genes implicated in mitochondrial biology. We identified a homozygous deletion of CEP89 in a patient with isolated complex IV deficiency, intellectual disability and multisystemic problems. CEP89 is a ubiquitously expressed and highly conserved gene of unknown function. Immunocytochemistry and cellular fractionation experiments showed that CEP89 is present both in the cytosol and in the mitochondrial intermembrane space. Furthermore, we ascertained in vitro that downregulation of CEP89 resulted in a severe decrease in complex IV in-gel activity and altered mobility, suggesting that the complex is aberrantly formed. Two-dimensional BN-SDS gel analysis revealed that CEP89 associates with a high-molecular weight complex. Together, these data confirm a role for CEP89 in mitochondrial metabolism. In addition, we modeled CEP89 loss of function in Drosophila. Ubiquitous knockdown of fly Cep89 decreased complex IV activity and resulted in complete lethality. Furthermore, Cep89 is required for mitochondrial integrity, membrane depolarization and synaptic transmission of photoreceptor neurons, and for (sub)synaptic organization of the larval neuromuscular junction. Finally, we tested neuronal Cep89 knockdown flies in the light-off jump reflex habituation assay, which revealed its role in learning. We conclude that CEP89 proteins play an important role in mitochondrial metabolism, especially complex IV activity, and are required for neuronal and cognitive function across evolution.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Niño , Cromosomas Humanos Par 19 , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/metabolismo , Citosol , Modelos Animales de Enfermedad , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Eliminación de Gen , Expresión Génica , Técnicas de Silenciamiento del Gen , Homocigoto , Humanos , Aprendizaje , Proteínas Asociadas a Microtúbulos , Mitocondrias/genética , Mutación , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple , Transporte de Proteínas , Sinapsis/genética , Sinapsis/metabolismo
5.
Nat Biotechnol ; 34(9): 982-6, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27479498

RESUMEN

The ability to rewrite the rules of genetic segregation would open new possibilities in diverse areas of biotechnology ranging from breeding to epigenetics. Here we engineer non-Mendelian inheritance of the entire maternal or paternal genome in Caenorhabditis elegans by changing the structure of the mitotic spindle during the first cell division of the zygote. Using germline-specific overexpression of a single protein, the conserved microtubule force regulator GPR-1, we increase forces that pull on spindle poles to convert the single bipolar mitotic spindle to two monopolar spindles. This generates two-cell embryos in which one cell contains only the maternal chromosomes and the other cell contains only the paternal chromosomes. As the embryo develops, each cell of the animal, including the germ cells, contains the genetic material of only one parent, resulting in hybrid F1 animals. Progeny of these animals (F2) inherit either only F0 maternal or only F0 paternal chromosomes, and thus descend from only either of their grandparents' gametes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Segregación Cromosómica/genética , Ingeniería Genética/métodos , Genoma/genética , Patrón de Herencia/genética , Animales , Femenino , Masculino , Análisis de la Aleatorización Mendeliana/métodos
6.
Elife ; 52016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26949257

RESUMEN

Sleep is an essential behavioral state. It is induced by conserved sleep-active neurons that express GABA. However, little is known about how sleep neuron function is determined and how sleep neurons change physiology and behavior systemically. Here, we investigated sleep in Caenorhabditis elegans, which is induced by the single sleep-active neuron RIS. We found that the transcription factor LIM-6, which specifies GABAergic function, in parallel determines sleep neuron function through the expression of APTF-1, which specifies the expression of FLP-11 neuropeptides. Surprisingly FLP-11, and not GABA, is the major component that determines the sleep-promoting function of RIS. FLP-11 is constantly expressed in RIS. At sleep onset RIS depolarizes and releases FLP-11 to induce a systemic sleep state.


Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas GABAérgicas/fisiología , Neuropéptidos/metabolismo , Sueño , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Tioléster Hidrolasas/metabolismo , Factores de Transcripción/metabolismo
7.
J Vis Exp ; (100): e52742, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26132740

RESUMEN

Behavior is controlled by the nervous system. Calcium imaging is a straightforward method in the transparent nematode Caenorhabditis elegans to measure the activity of neurons during various behaviors. To correlate neural activity with behavior, the animal should not be immobilized but should be able to move. Many behavioral changes occur during long time scales and require recording over many hours of behavior. This also makes it necessary to culture the worms in the presence of food. How can worms be cultured and their neural activity imaged over long time scales? Agarose Microchamber Imaging (AMI) was previously developed to culture and observe small larvae and has now been adapted to study all life stages from early L1 until the adult stage of C. elegans. AMI can be performed on various life stages of C. elegans. Long-term calcium imaging is achieved without immobilizing the animals by using short externally triggered exposures combined with an electron multiplying charge-coupled device (EMCCD) camera recording. Zooming out or scanning can scale up this method to image up to 40 worms in parallel. Thus, a method is described to image behavior and neural activity over long time scales in all life stages of C. elegans.


Asunto(s)
Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Neuronas/metabolismo , Animales , Caenorhabditis elegans/química , Calcio/análisis , Masculino , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Animales , Neuronas/química , Sefarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA