Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 51, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252153

RESUMEN

Retinitis pigmentosa (RP) and macular dystrophy (MD) cause severe retinal dysfunction, affecting 1 in 4000 people worldwide. This disease is currently assumed to be intractable, because effective therapeutic methods have not been established, regardless of genetic or sporadic traits. Here, we examined a RP mouse model in which the Prominin-1 (Prom1) gene was deficient and investigated the molecular events occurring at the outset of retinal dysfunction. We extracted the Prom1-deficient retina subjected to light exposure for a short time, conducted single-cell expression profiling, and compared the gene expression with and without stimuli. We identified the cells and genes whose expression levels change directly in response to light stimuli. Among the genes altered by light stimulation, Igf1 was decreased in rod photoreceptor cells and astrocytes under the light-stimulated condition. Consistently, the insulin-like growth factor (IGF) signal was weakened in light-stimulated photoreceptor cells. The recovery of Igf1 expression with the adeno-associated virus (AAV) prevented photoreceptor cell death, and its treatment in combination with the endothelin receptor antagonist led to the blockade of abnormal glial activation and the promotion of glycolysis, thereby resulting in the improvement of retinal functions, as assayed by electroretinography. We additionally demonstrated that the attenuation of mammalian/mechanistic target of rapamycin (mTOR), which mediates IGF signalling, leads to complications in maintaining retinal homeostasis. Together, we propose that combinatorial manipulation of distinct mechanisms is useful for the maintenance of the retinal condition.


Asunto(s)
Degeneración Macular , Enfermedades de la Retina , Retinitis Pigmentosa , Animales , Ratones , Endotelinas , Factor I del Crecimiento Similar a la Insulina/genética , Retina , Células Fotorreceptoras Retinianas Bastones
2.
Dev Biol ; 472: 30-37, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33444612

RESUMEN

Zebrafish have a remarkable ability to regenerate the myocardium after injury by proliferation of pre-existing cardiomyocytes. Fibroblast growth factor (FGF) signaling is known to play a critical role in zebrafish heart regeneration through promotion of neovascularization of the regenerating myocardium. Here, we define an additional function of FGF signaling in the zebrafish myocardium after injury. We find that FGF signaling is active in a small fraction of cardiomyocytes before injury, and that the number of FGF signaling-positive cardiomyocytes increases after amputation-induced injury. We show that ERK phosphorylation is prominent in endothelial cells, but not in cardiomyocytes. In contrast, basal levels of phospho-AKT positive cardiomyocytes are detected before injury, and the ratio of phosphorylated AKT-positive cardiomyocytes increases after injury, indicating a role of AKT signaling in cardiomyocytes following injury. Inhibition of FGF signaling reduced the number of phosphorylated AKT-positive cardiomyocytes and increased cardiomyocyte death without injury. Heart injury did not induce cardiomyocyte death; however, heart injury in combination with inhibition of FGF signaling caused significant increase in cardiomyocyte death. Pharmacological inhibition of AKT signaling after heart injury also caused increased cardiomyocyte death. Our data support the idea that FGF-AKT signaling-dependent cardiomyocyte survival is necessary for subsequent heart regeneration.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Cromonas/farmacología , Factores de Crecimiento de Fibroblastos/genética , Lesiones Cardíacas/metabolismo , Morfolinas/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Regeneración/efectos de los fármacos
3.
Development ; 145(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29769221

RESUMEN

Little is known about how the sizes of animal tissues are controlled. A prominent example is somite size, which varies widely both within an individual and across species. Despite intense study of the segmentation clock governing the timing of somite generation, how it relates to somite size is poorly understood. Here, we examine somite scaling and find that somite size at specification scales with the length of the presomitic mesoderm (PSM) despite considerable variation in PSM length across developmental stages and in surgically size-reduced embryos. Measurement of clock period, axis elongation speed and clock gene expression patterns demonstrate that existing models fail to explain scaling. We posit a 'clock and scaled gradient' model, in which somite boundaries are set by a dynamically scaling signaling gradient across the PSM. Our model not only explains existing data, but also makes a unique prediction that we confirm experimentally - the formation of periodic 'echoes' in somite size following perturbation of the size of one somite. Our findings demonstrate that gradient scaling plays a central role in both progression and size control of somitogenesis.


Asunto(s)
Tipificación del Cuerpo/genética , Fase de Segmentación del Huevo/fisiología , Morfogénesis/genética , Somitos/embriología , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Tamaño Corporal/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Modelos Teóricos , Tamaño de los Órganos/fisiología , Proteínas de Pez Cebra/fisiología
4.
Genes Cells ; 25(8): 593-602, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32533606

RESUMEN

A main feature of aged organisms is the accumulation of senescent cells. Accumulated senescent cells, especially stress-induced premature senescent cells, in aged organisms lead to the decline of the regenerative potential and function of tissues. We recently reported that the over-expression of NAMPT, which is the rate-limiting enzyme in mammalian NAD+ salvage pathway, delays replicative senescence in vitro. However, whether Nampt-overexpressing cells are tolerant of stress-induced premature senescence remains unknown. Here, we show that primary mouse embryonic fibroblasts derived from Nampt-overexpressing transgenic mice (Nampt Tg-MEF cells) possess resistance against stress-induced premature senescence in vitro. We found that higher oxidative or endoplasmic reticulum (ER) stress is required to induce premature senescence in Nampt Tg-MEF cells compared to wild-type cells. Moreover, we found that Nampt Tg-MEF cells show acute expression of unfolded protein response (UPR)-related genes, which in turn would have helped to restore proteostasis and avoid cellular senescence. Our results demonstrate that NAMPT/NAD+ axis functions to protect cells not only from replicative senescence, but also from stress-induced premature senescence in vitro. We anticipate that in vivo activation of NAMPT activity or increment of NAD+ would protect tissues from the accumulation of premature senescent cells, thereby maintaining healthy aging.


Asunto(s)
Senescencia Celular/fisiología , Nicotinamida Fosforribosiltransferasa/genética , Animales , Antioxidantes/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Senescencia Celular/genética , Estrés del Retículo Endoplásmico/fisiología , Fibroblastos , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Ratones , Nicotinamida Fosforribosiltransferasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología
5.
Genes Cells ; 25(8): 582-592, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32516841

RESUMEN

Collective cell migration, in which cells assemble and move together, is an essential process in embryonic development, wound healing and cancer metastasis. Chemokine signaling guides cell assemblies to their destinations. In zebrafish posterior lateral line primordium (PLLP), a model system for collective cell migration, it has been proposed that the chemokine ligand Cxcl12a secreted from muscle pioneer cells (MPs) and muscle fast fibers (MFFs), which are distributed along with the horizontal midline, binds to the receptor Cxcr4b in PLLP and that Cxcl12a-Cxcr4b signaling guides the anterior-to-posterior migration of PLLP along the horizontal midline. However, how the surrounding tissues affect PLLP migration remains to be elucidated. Here, we investigated the relationship between the PLLP and the surrounding tissues and found that a furrow between the dorsal and ventral myotomes is generated by Sonic hedgehog (Shh) signaling-dependent MP and MFF differentiation and that the PLLP migrates in this furrow. When transient inhibition of Shh signaling impaired both the furrow formation and differentiation of cxcl12a-expressing MPs/MFFs, directional PLLP migration was severely perturbed. Furthermore, when differentiated MPs and MFFs were ablated by femtosecond laser irradiations, the furrow remained and PLLP migration was relatively unaffected. These results suggest that the furrow formation between the dorsal and ventral myotomes is associated with the migratory behavior of PLLP.


Asunto(s)
Movimiento Celular/fisiología , Sistema de la Línea Lateral/embriología , Pez Cebra/embriología , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Quimiocina CXCL12/metabolismo , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
6.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918226

RESUMEN

Aging is a phenomenon underlined by complex molecular and biochemical changes that occur over time. One of the metabolites that is gaining strong research interest is nicotinamide adenine dinucleotide, NAD+, whose cellular level has been shown to decrease with age in various tissues of model animals and humans. Administration of NAD+ precursors, nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), to supplement NAD+ production through the NAD+ salvage pathway has been demonstrated to slow down aging processes in mice. Therefore, NAD+ is a critical metabolite now understood to mitigate age-related tissue function decline and prevent age-related diseases in aging animals. In human clinical trials, administration of NAD+ precursors to the elderly is being used to address systemic age-associated physiological decline. Among NAD+ biosynthesis pathways in mammals, the NAD+ salvage pathway is the dominant pathway in most of tissues, and NAMPT is the rate limiting enzyme of this pathway. However, only a few activators of NAMPT, which are supposed to increase NAD+, have been developed so far. In this review, we will focus on the importance of NAD+ and the possible application of an activator of NAMPT to promote successive aging.


Asunto(s)
Envejecimiento/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Humanos
7.
PLoS Comput Biol ; 15(2): e1006579, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716091

RESUMEN

The reproducibility of embryonic development is remarkable, although molecular processes are intrinsically stochastic at the single-cell level. How the multicellular system resists the inevitable noise to acquire developmental reproducibility constitutes a fundamental question in developmental biology. Toward this end, we focused on vertebrate somitogenesis as a representative system, because somites are repeatedly reproduced within a single embryo whereas such reproducibility is lost in segmentation clock gene-deficient embryos. However, the effect of noise on developmental reproducibility has not been fully investigated, because of the technical difficulty in manipulating the noise intensity in experiments. In this study, we developed a computational model of ERK-mediated somitogenesis, in which bistable ERK activity is regulated by an FGF gradient, cell-cell communication, and the segmentation clock, subject to the intrinsic noise. The model simulation generated our previous in vivo observation that the ERK activity was distributed in a step-like gradient in the presomitic mesoderm, and its boundary was posteriorly shifted by the clock in a stepwise manner, leading to regular somite formation. Here, we showed that this somite regularity was robustly maintained against the noise. Removing the clock from the model predicted that the stepwise shift of the ERK activity occurs at irregular timing with irregular distance owing to the noise, resulting in somite size variation. This model prediction was recently confirmed by live imaging of ERK activity in zebrafish embryos. Through theoretical analysis, we presented a mechanism by which the clock reduces the inherent somite irregularity observed in clock-deficient embryos. Therefore, this study indicates a novel role of the segmentation clock in noise-resistant developmental reproducibility.


Asunto(s)
Tipificación del Cuerpo/fisiología , Desarrollo Embrionario/fisiología , Animales , Artefactos , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Biología Evolutiva/métodos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas , Mesodermo , Modelos Moleculares , Reproducibilidad de los Resultados , Somitos/fisiología , Pez Cebra/embriología
8.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825105

RESUMEN

Cilia are antenna-like structures present in many vertebrate cells. These organelles detect extracellular cues, transduce signals into the cell, and play an essential role in ensuring correct cell proliferation, migration, and differentiation in a spatiotemporal manner. Not surprisingly, dysregulation of cilia can cause various diseases, including cancer and ciliopathies, which are complex disorders caused by mutations in genes regulating ciliary function. The structure and function of cilia are dynamically regulated through various mechanisms, among which E3 ubiquitin ligases and deubiquitinases play crucial roles. These enzymes regulate the degradation and stabilization of ciliary proteins through the ubiquitin-proteasome system. In this review, we briefly highlight the role of cilia in ciliopathy and cancer; describe the roles of E3 ubiquitin ligases and deubiquitinases in ciliogenesis, ciliopathy, and cancer; and highlight some of the E3 ubiquitin ligases and deubiquitinases that are potential therapeutic targets for these disorders.


Asunto(s)
Ciliopatías/tratamiento farmacológico , Enzimas Desubicuitinizantes/metabolismo , Neoplasias/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciliopatías/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Neoplasias/metabolismo , Ubiquitinación/efectos de los fármacos
9.
J Biol Chem ; 293(31): 12167-12176, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29895619

RESUMEN

Somites are a pair of epithelial spheres beside a neural tube and are formed with an accurate periodicity during embryogenesis in vertebrates. It has been known that Hes7 is one of the core clock genes for somitogenesis, and its expression domain is restricted in the presomitic mesoderm (PSM). However, the molecular mechanism of how Hes7 transcription is regulated is not clear. Here, using transgenic mice and luciferase-based reporter assays and in vitro binding assays, we unravel the mechanism by which Hes7 is expressed exclusively in the PSM. We identified a Hes7 essential region residing -1.5 to -1.1 kb from the transcription start site of mouse Hes7, and this region was indispensable for PSM-specific Hes7 expression. We also present detailed analyses of cis-regulatory elements within the Hes7 essential region that directs Hes7 expression in the PSM. Hes7 expression in the PSM was up-regulated through the E-box, T-box, and RBPj-binding element in the Hes7 essential region, presumably through synergistic signaling involving mesogenin1, T-box6 (Tbx6), and Notch. Furthermore, we demonstrate that Tbx18, Ripply2, and Hes7 repress the activation of the Hes7 essential region by the aforementioned transcription factors. Our findings reveal that a unified transcriptional regulatory network involving a Hes7 essential region confers robust PSM-specific Hes7 gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Mesodermo/metabolismo , Receptor Notch1/metabolismo , Somitos/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Elementos E-Box , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Mesodermo/química , Mesodermo/embriología , Ratones , Receptor Notch1/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Somitos/embriología , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
10.
Genes Cells ; 22(12): 982-992, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29178516

RESUMEN

Senescent cells accumulate in tissues of aged animals and deteriorate tissue functions. The elimination of senescent cells from aged mice not only attenuates progression of already established age-related disorders, but also extends median lifespan. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ salvage pathway, has shown a protective effect on cellular senescence of human primary cells. However, it still remains unclear how NAMPT has a protective impact on aging in vitro and in vivo. In this study, we found that primary mouse embryonic fibroblast (MEF) cells undergo progressive decline of NAMPT and NAD+ contents during serial passaging before becoming senescent. Furthermore, we showed that constitutive Nampt over-expression increases cellular NAD+ content and delays cellular senescence of MEF cells in vitro. We further found that constitutive Nampt over-expression increases SIRT1 activity, increases the expression of antioxidant genes, superoxide dismutase 2 and catalase and promotes resistance against oxidative stress. These findings suggest that Nampt over-expression in MEF cells delays cellular senescence by the mitigation of oxidative stress via the upregulation of superoxide dismutase 2 and catalase gene expressions by SIRT1 activation.


Asunto(s)
Antioxidantes/metabolismo , Senescencia Celular , Citocinas/metabolismo , Regulación de la Expresión Génica , Nicotinamida Fosforribosiltransferasa/metabolismo , Sirtuina 1/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Citocinas/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nicotinamida Fosforribosiltransferasa/genética , Estrés Oxidativo , Sirtuina 1/genética
11.
Int J Mol Sci ; 20(1)2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30597912

RESUMEN

During vertebrate development, extracellular signal-regulated kinase (ERK) is activated by growth factors such as fibroblast growth factor (FGF), and it regulates the formation of tissues/organs including eyes, brains, somites, limbs, and inner ears. However, an experimental system to monitor ERK activity dynamics in the entire body of the vertebrate embryo is lacking. We recently studied ERK activity dynamics in the pre-somitic mesoderm of living zebrafish embryos injected with mRNAs encoding a Förster resonance energy transfer (FRET)-based ERK biosensor. In this study, transgenic zebrafish stably and ubiquitously expressing the ERK biosensor were generated to monitor ERK activity dynamics throughout embryonic development. The system allowed the identification of ERK activation domains in embryos from the late blastula to the late segmentation stage, consistent with immunostaining patterns obtained using anti-phosphorylated ERK antibody. A spatiotemporal map of ERK activity in the entire body during zebrafish embryogenesis was generated, and previously unidentified activation dynamics and ERK domains were identified. The proposed system is the first reported method to monitor ERK activity dynamics during vertebrate embryogenesis, providing insight into the role of ERK activity in normal and abnormal development in living vertebrate embryos.


Asunto(s)
Desarrollo Embrionario , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Técnicas Biosensibles , Quinasas MAP Reguladas por Señal Extracelular/química , Estadios del Ciclo de Vida , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Pez Cebra/genética
12.
Development ; 141(5): 1104-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24504340

RESUMEN

Vertebrate segments called somites are generated by periodic segmentation of the anterior extremity of the presomitic mesoderm (PSM). During somite segmentation in zebrafish, mesp-b determines a future somite boundary at position B-2 within the PSM. Heat-shock experiments, however, suggest that an earlier future somite boundary exists at B-5, but the molecular signature of this boundary remains unidentified. Here, we characterized fibroblast growth factor (FGF) signal activity within the PSM, and demonstrated that an anterior limit of downstream Erk activity corresponds to the future B-5 somite boundary. Moreover, the segmentation clock is required for a stepwise posterior shift of the Erk activity boundary during each segmentation. Our results provide the first molecular evidence of the future somite boundary at B-5, and we propose that clock-dependent cyclic inhibition of the FGF/Erk signal is a key mechanism in the generation of perfect repetitive structures in zebrafish development.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Somitos/citología , Pez Cebra , Proteínas de Pez Cebra/genética
13.
Development ; 141(1): 158-65, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24284210

RESUMEN

During vertebrate development, the primary body axis elongates towards the posterior and is periodically divided into somites, which give rise to the vertebrae, skeletal muscles and dermis. Somites form periodically from anterior to posterior, and the anterior somites form in a more rapid cycle than the posterior somites. However, how this anteroposterior (AP) difference in somitogenesis is generated and how it contributes to the vertebrate body plan remain unclear. Here, we show that the AP difference in zebrafish somitogenesis originates from a variable overlapping segmentation period between one somite and the next. The AP difference is attributable to spatiotemporal inhibition of the clock gene her1 via retinoic acid (RA) regulation of the transcriptional repressor ripply1. RA depletion thus disrupts timely somite formation at the transition, eventually leading to the loss of one somite and the resultant cervical vertebra. Overall, our results indicate that RA regulation of the AP difference is crucial for proper linkage between the head and trunk in the vertebrate body plan.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/fisiología , Proteínas Nucleares/metabolismo , Somitos/embriología , Tretinoina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Tipificación del Cuerpo/genética , Vértebras Cervicales/embriología , Técnicas de Silenciamiento del Gen , Morfolinos/genética , Proteínas Nucleares/biosíntesis , Retinal-Deshidrogenasa/genética , Transducción de Señal , Transcripción Genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
14.
Development ; 139(19): 3553-60, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22899848

RESUMEN

RNA-binding proteins (RBPs) bind to numerous and diverse mRNAs to control gene expression post-transcriptionally, although the in vivo functions of specific RBP-mRNA interactions remain largely unknown. Here, we show that an RBP named Cugbp, Elav-like family member 1 (Celf1) controls expression of a gene named doublesex and mab-3 related transcription factor 2a (dmrt2a), which is essential for somite symmetry and left-right patterning during zebrafish development. Celf1 promotes dmrt2a mRNA decay by binding to UGU repeats in the 3'UTR of dmrt2a mRNA such that celf1 overexpression reduces the amount of dmrt2a mRNA, leading to asymmetric somitogenesis and laterality defects. Furthermore, blocking the Celf1-dmrt2a mRNA interaction by a target protector morpholino alleviates failures in somite symmetry and left-right patterning that are caused by celf1 overexpression. Our results therefore demonstrate that Celf1-dependent fine-tuning of dmrt2a expression is essential for generating bilateral symmetry of somites and left-right asymmetric patterning during zebrafish development.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/fisiología , Somitos/embriología , Factores de Transcripción/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteínas CELF1 , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Ratones , Datos de Secuencia Molecular , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Somitos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(24): 9881-6, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21628557

RESUMEN

The assembly of progenitor cells is a crucial step for organ formation during vertebrate development. Kupffer's vesicle (KV), a key organ required for the left-right asymmetric body plan in zebrafish, is generated from a cluster of ~20 dorsal forerunner cells (DFCs). Although several genes are known to be involved in KV formation, how DFC clustering is regulated and how cluster formation then contributes to KV formation remain unclear. Here we show that positive feedback regulation of FGF signaling by Canopy1 (Cnpy1) controls DFC clustering. Cnpy1 positively regulates FGF signals within DFCs, which in turn promote Cadherin1-mediated cell adhesion between adjacent DFCs to sustain cell cluster formation. When this FGF positive feedback loop is disrupted, the DFC cluster fails to form, eventually leading to KV malformation and defects in the establishment of laterality. Our results therefore uncover both a previously unidentified role of FGF signaling during vertebrate organogenesis and a regulatory mechanism underlying cell cluster formation, which is an indispensable step for formation of a functional KV and establishment of the left-right asymmetric body plan.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Células Madre/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Retroalimentación Fisiológica , Factor 8 de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Proteínas del Tejido Nervioso/genética , Oligonucleótidos Antisentido/genética , Organogénesis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
J Physiol ; 591(7): 1749-69, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23318872

RESUMEN

Olfactory receptor neurons (ORNs), which undergo lifelong neurogenesis, have been studied extensively to understand how neurons form precise topographical networks. Neural projections from ORNs are principally guided by the genetic code, which directs projections from ORNs that express a specific odorant receptor to the corresponding glomerulus in the olfactory bulb. In addition, ORNs utilise spontaneous firing activity to establish and maintain the neural map. However, neither the process of generating this spontaneous activity nor its role as a guidance cue in the olfactory bulb is clearly understood. Utilising extracellular unit-recordings in mouse olfactory epithelium slices, we demonstrated that the hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels in the somas of ORNs depolarise their membranes and boost their spontaneous firing rates by sensing basal cAMP levels; the odorant-sensitive cyclic nucleotide-gated (CNG) channels in cilia do not. The basal cAMP levels were maintained via the standing activation of ß-adrenergic receptors. Using a Tet-off system to over-express HCN4 channels resulted in the enhancement of spontaneous ORN activity and dramatically reduced both the size and number of glomeruli in the olfactory bulb. This phenotype was rescued by the administration of doxycycline. These findings suggest that cAMP plays different roles in cilia and soma and that basal cAMP levels in the soma are directly converted via HCN channels into a spontaneous firing frequency that acts as an intrinsic guidance cue for the formation of olfactory networks.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Bulbo Olfatorio/fisiología , Neuronas Receptoras Olfatorias/fisiología , Animales , AMP Cíclico/fisiología , Femenino , Técnicas In Vitro , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Odorantes , Fosfatos de Fosfatidilinositol/fisiología
17.
Cell Mol Life Sci ; 69(18): 3069-77, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22527718

RESUMEN

In vertebrates, internal organs are positioned asymmetrically across the left-right (LR) axis, placing them in a defined area within the body. This LR asymmetric placement is a conserved feature of the vertebrate body plan. Events determining LR asymmetry occur during embryonic development, and are regulated by the coordinated action of genetic mechanisms that are evolutionarily conserved among vertebrates. Recent studies using zebrafish have provided new insights into how the Kupffer's vesicle organizer region is generated, and how it relays LR asymmetry information to the lateral plate mesoderm. In this review, we summarize recent advances in zebrafish and describe our current understanding of the mechanisms underlying these processes.


Asunto(s)
Tipificación del Cuerpo , Pez Cebra/embriología , Animales , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Mesodermo , ARN Mensajero/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
Nat Genet ; 36(7): 750-4, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15170214

RESUMEN

During somitogenesis, a pair of somites buds off from the presomitic mesoderm every 2 hours in mouse embryos, suggesting that somite segmentation is controlled by a biological clock with a 2-hour cycle. Expression of the basic helix-loop-helix factor Hes7, an effector of Notch signaling, follows a 2-hour oscillatory cycle controlled by negative feedback; this is proposed to be the molecular basis for the somite segmentation clock. If the proposal is correct, this clock should depend crucially on the short lifetime of Hes7. To address the biological importance of Hes7 instability, we generated mice expressing mutant Hes7 with a longer half-life (approximately 30 min compared with approximately 22 min for wild-type Hes7) but normal repressor activity. In these mice, somite segmentation and oscillatory expression became severely disorganized after a few normal cycles of segmentation. We simulated this effect mathematically using a direct autorepression model. Thus, instability of Hes7 is essential for sustained oscillation and for its function as a segmentation clock.


Asunto(s)
Somitos , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Ratones , Ratones Endogámicos C3H , Factores de Transcripción/genética
19.
Int J Mol Sci ; 14(9): 18009-23, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24005864

RESUMEN

We recently reported that an RNA binding protein called Cugbp Elav-like family member 1 (Celf1) regulates somite symmetry and left-right patterning in zebrafish. In this report, we show additional roles of Celf1 in zebrafish organogenesis. When celf1 is knocked down by using an antisense morpholino oligonucleotides (MO), liver buds fail to form, and pancreas buds do not form a cluster, suggesting earlier defects in endoderm organogenesis. As expected, we found failures in endoderm cell growth and migration during gastrulation in embryos injected with celf1-MOs. RNA immunoprecipitation revealed that Celf1 binds to gata5 and cdc42 mRNAs which are known to be involved in cell growth and migration, respectively. Our results therefore suggest that Celf1 regulates proper organogenesis of endoderm-derived tissues by regulating the expression of such targets.


Asunto(s)
Endodermo/citología , Endodermo/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas CELF1 , Factor de Transcripción GATA5/genética , Factor de Transcripción GATA5/metabolismo , Oligorribonucleótidos Antisentido/genética , Unión Proteica/genética , Unión Proteica/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Pez Cebra , Proteínas de Pez Cebra/genética
20.
PLoS Genet ; 5(9): e1000662, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19779553

RESUMEN

Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.


Asunto(s)
Relojes Biológicos , Organogénesis , Receptores Notch/metabolismo , Somitos/embriología , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Embrión de Mamíferos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Ratones , Mutación/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA