Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Ecol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809282

RESUMEN

Plant-microbe interactions play a pivotal role in shaping host fitness, especially concerning chemical defense mechanisms. In cycads, establishing direct correlations between specific endophytic microbes and the synthesis of highly toxic defensive phytochemicals has been challenging. Our research delves into the intricate relationship between plant-microbe associations and the variation of secondary metabolite production in two closely related Zamia species that grow in distinct habitats; terrestrial and epiphytic. Employing an integrated approach, we combined microbial metabarcoding, which characterize the leaf endophytic bacterial and fungal communities, with untargeted metabolomics to test if the relative abundances of specific microbial taxa in these two Zamia species were associated with different metabolome profiles. The two species studied shared approximately 90% of the metabolites spanning diverse biosynthetic pathways: alkaloids, amino acids, carbohydrates, fatty acids, polyketides, shikimates, phenylpropanoids, and terpenoids. Co-occurrence networks revealed positive associations among metabolites from different pathways, underscoring the complexity of their interactions. Our integrated analysis demonstrated to some degree that the intraspecific variation in metabolome profiles of the two host species was associated with the abundance of bacterial orders Acidobacteriales and Frankiales, as well as the fungal endophytes belonging to the orders Chaetothyriales, Glomerellales, Heliotiales, Hypocreales, and Sordariales. We further associate individual metabolic similarity with four specific fungal endophyte members of the core microbiota, but no specific bacterial taxa associations were identified. This study represents a pioneering investigation to characterize leaf endophytes and their association with metabolomes in tropical gymnosperms, laying the groundwork for deeper inquiries into this complex domain.

2.
Microbiol Resour Announc ; : e0051124, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356165

RESUMEN

Two ascomycetes, Neofusicoccum sp. and Xylaria sp., were isolated from healthy leaves of the tropical gymnosperms Zamia pseudoparasitica (Z2) and Zamia nana (Z50) from Panama. The two draft genomes possess a broad predicted repertoire of carbohydrate-degrading CAZymes, peptidases, and secondary metabolites, with more secondary metabolite clusters in the Xylaria isolate.

3.
Antibiotics (Basel) ; 9(12)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353062

RESUMEN

The present research aimed to evaluate the antibacterial activity of volatile organic compounds (VOCs) produced by octocoral-associated bacteria Bacillus sp. BO53 and Pseudoalteromonas sp. GA327. The volatilome bioactivity of both bacteria species was evaluated against human pathogenic antibiotic-resistant bacteria, methicillin-resistant Staphylococcus aureus, Acinetobacter baumanni, and Pseudomonas aeruginosa. In this regard, the in vitro tests showed that Bacillus sp. BO53 VOCs inhibited the growth of P. aeruginosa and reduced the growth of S. aureus and A. baumanni. Furthermore, Pseudoalteromonas sp. GA327 strongly inhibited the growth of A. baumanni, and P. aeruginosa. VOCs were analyzed by headspace solid-phase microextraction (HS-SPME) joined to gas chromatography-mass spectrometry (GC-MS) methodology. Nineteen VOCs were identified, where 5-acetyl-2-methylpyridine, 2-butanone, and 2-nonanone were the major compounds identified on Bacillus sp. BO53 VOCs; while 1-pentanol, 2-butanone, and butyl formate were the primary volatile compounds detected in Pseudoalteromonas sp. GA327. We proposed that the observed bioactivity is mainly due to the efficient inhibitory biochemical mechanisms of alcohols and ketones upon antibiotic-resistant bacteria. This is the first report which describes the antibacterial activity of VOCs emitted by octocoral-associated bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA