Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Biol ; 16(9): e2005513, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30260948

RESUMEN

The morphological, molecular, and functional heterogeneity of astrocytes is under intense scrutiny, but how this diversity is ontogenetically achieved remains largely unknown. Here, by quantitative in vivo clonal analyses and proliferation studies, we demonstrate that the major cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program comprising (i) a time-dependent decline in both clone size and progenitor multipotency, associated with clone allocation first to the hemispheres and then to the vermis(ii) distinctive clonal relationships among astrocyte types, revealing diverse lineage potentials of embryonic and postnatal progenitors; and (iii) stereotyped clone architectures and recurrent modularities that correlate to layer-specific dynamics of postnatal proliferation/differentiation. In silico simulations indicate that the sole presence of a unique multipotent progenitor at the source of the whole astrogliogenic program is unlikely and rather suggest the involvement of additional committed components.


Asunto(s)
Astrocitos/citología , Cerebelo/citología , Animales , Animales Recién Nacidos , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Tamaño de la Célula , Cerebelo/embriología , Células Clonales , Simulación por Computador , Femenino , Humanos , Ratones Endogámicos C57BL , Modelos Biológicos , Sustancia Blanca/citología
2.
Proc Natl Acad Sci U S A ; 106(51): 21924-9, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19959663

RESUMEN

The link between cortical precursors G1 duration (TG1) and their mode of division remains a major unresolved issue of potential importance for regulating corticogenesis. Here, we induced a 25% reduction in TG1 in mouse cortical precursors via forced expression of cyclin D1 and cyclin E1. We found that in utero electroporation-mediated gene transfer transfects a cohort of synchronously cycling precursors, necessitating alternative methods of measuring cell-cycle phases to those classical used. TG1 reduction promotes cell-cycle reentry at the expense of differentiation and increases the self-renewal capacities of Pax6 precursors as well as of Tbr2 basal precursors (BPs). A population level analysis reveals sequential and lineage-specific effects, showing that TG1 reduction: (i) promotes Pax6 self-renewing proliferative divisions before promoting divisions wherein Pax6 precursors generate Tbr2 BPs and (ii) promotes self-renewing proliferative divisions of Tbr2 precursors at the expense of neurogenesis, thus leading to an amplification of the BPs pool in the subventricular zone and the dispersed mitotic compartment of the intermediate zone. These results point to the G1 mode of division relationship as an essential control mechanism of corticogenesis. This is further supported by long-term studies showing that TG1 reduction results in cytoarchitectural modifications including supernumerary supragranular neuron production. Modeling confirms that the TG1-induced changes in neuron production and laminar fate are mediated via the changes in the mode of division. These findings also have implications for understanding the mechanisms that have contributed to brain enlargement and complexity during evolution.


Asunto(s)
División Celular , Corteza Cerebral/citología , Fase G1 , Neuronas/citología , Animales , Secuencia de Bases , Electroporación , Proteínas del Ojo/genética , Femenino , Proteínas de Homeodominio/genética , Ratones , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Fenotipo , Embarazo , ARN Interferente Pequeño , Proteínas Represoras/genética
3.
Science ; 359(6376): 658-662, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29439238

RESUMEN

Neural stem and progenitor cells (NSPCs) generate neurons throughout life in the mammalian hippocampus. We used chronic in vivo imaging and followed genetically labeled individual NSPCs and their progeny in the mouse hippocampus for up to 2 months. We show that NSPCs targeted by the endogenous Achaete-scute homolog 1 (Ascl1) promoter undergo limited rounds of symmetric and asymmetric divisions, eliciting a burst of neurogenic activity, after which they are lost. Further, our data reveal unexpected asymmetric divisions of nonradial glia-like NSPCs. Cell fates of Ascl1-labeled lineages suggest a developmental-like program involving a sequential transition from a proliferative to a neurogenic phase. By providing a comprehensive description of lineage relationships, from dividing NSPCs to newborn neurons integrating into the hippocampal circuitry, our data offer insight into how NSPCs support life-long hippocampal neurogenesis.


Asunto(s)
División Celular , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Células-Madre Neurales/citología , Neurogénesis , Neuroimagen , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Muerte Celular , División Celular/genética , Ratones , Red Nerviosa/citología , Red Nerviosa/crecimiento & desarrollo , Neurogénesis/genética , Neuroglía/citología , Regiones Promotoras Genéticas
4.
Stem Cell Investig ; 3: 39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27668246

RESUMEN

It has been hypothesized that the higher number of neurons in human cortex compared to the chimpanzee and other primate species is key to high cognitive function. Are human cortical precursors endowed with specific properties that drive greater neuronal expansion than in other non-human primates? Otani et al. 2016 addressed this issue taking advantage of comparative in vitro corticogenesis models based on human, chimpanzee and macaque pluripotent stem cells. Clonal analysis revealed a heterochrony of early developmental events possibly leading to a relatively higher expansion of human cortical precursor population. In absence of evidence going beyond putative correlation, the claim that stem cell models of cortical development indicate mechanism of cortical size regulation needs to be further examined notably with respect to in vivo observations of cortical precursor lineages.

5.
J Comp Neurol ; 524(3): 535-63, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26053631

RESUMEN

Generation of the primate cortex is characterized by the diversity of cortical precursors and the complexity of their lineage relationships. Recent studies have reported miscellaneous precursor types based on observer classification of cell biology features including morphology, stemness, and proliferative behavior. Here we use an unsupervised machine learning method for Hidden Markov Trees (HMTs), which can be applied to large datasets to classify precursors on the basis of morphology, cell-cycle length, and behavior during mitosis. The unbiased lineage analysis automatically identifies cell types by applying a lineage-based clustering and model-learning algorithm to a macaque corticogenesis dataset. The algorithmic results validate previously reported observer classification of precursor types and show numerous advantages: It predicts a higher diversity of progenitors and numerous potential transitions between precursor types. The HMT model can be initialized to learn a user-defined number of distinct classes of precursors. This makes it possible to 1) reveal as yet undetected precursor types in view of exploring the significant features of precursors with respect to specific cellular processes; and 2) explore specific lineage features. For example, most precursors in the experimental dataset exhibit bidirectional transitions. Constraining the directionality in the HMT model leads to a reduction in precursor diversity following multiple divisions, thereby suggesting that one impact of bidirectionality in corticogenesis is to maintain precursor diversity. In this way we show that unsupervised lineage analysis provides a valuable methodology for investigating fundamental features of corticogenesis.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Procesamiento de Imagen Asistido por Computador/métodos , Macaca fascicularis/embriología , Células Madre/citología , Aprendizaje Automático no Supervisado , Animales , Linaje de la Célula , Análisis por Conglomerados , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hidrozoos , Inmunohistoquímica , Cadenas de Markov , Microscopía Confocal , Reconocimiento de Normas Patrones Automatizadas/métodos , Nicho de Células Madre , Técnicas de Cultivo de Tejidos , Grabación en Video
6.
Neuron ; 81(6): 1255-1262, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24583023

RESUMEN

Major nonprimate-primate differences in cortico-genesis include the dimensions, precursor lineages, and developmental timing of the germinal zones (GZs). microRNAs (miRNAs) of laser-dissected GZ compartments and cortical plate (CP) from embryonic E80 macaque visual cortex were deep sequenced. The CP and the GZ including ventricular zone (VZ) and outer and inner subcompartments of the outer subventricular zone (OSVZ) in area 17 displayed unique miRNA profiles. miRNAs present in primate, but absent in rodent, contributed disproportionately to the differential expression between GZ subregions. Prominent among the validated targets of these miRNAs were cell-cycle and neurogenesis regulators. Coevolution between the emergent miRNAs and their targets suggested that novel miRNAs became integrated into ancient gene circuitry to exert additional control over proliferation. We conclude that multiple cell-cycle regulatory events contribute to the emergence of primate-specific cortical features, including the OSVZ, generated enlarged supragranular layers, largely responsible for the increased primate cortex computational abilities.


Asunto(s)
Ciclo Celular/genética , Regulación de la Expresión Génica , Macaca/genética , MicroARNs/genética , Neurogénesis/genética , Neuronas/citología , Corteza Visual/citología , Animales , Ciclo Celular/fisiología , Evolución Molecular , Femenino , Neurogénesis/fisiología , Neuronas/metabolismo , Corteza Visual/metabolismo
7.
Neuron ; 80(2): 442-57, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24139044

RESUMEN

Long-term ex vivo live imaging combined with unbiased sampling of cycling precursors shows that macaque outer subventricular zone (OSVZ) includes four distinct basal radial glial (bRG) cell morphotypes, bearing apical and/or basal processes in addition to nonpolar intermediate progenitors (IPs). Each of the five precursor types exhibits extensive self-renewal and proliferative capacities as well as the ability to directly generate neurons, albeit with different frequencies. Cell-cycle parameters exhibited an unusual stage-specific regulation with short cell-cycle duration and increased rates of proliferative divisions during supragranular layer production at late corticogenesis. State transition analysis of an extensive clonal database reveals bidirectional transitions between OSVZ precursor types as well as stage-specific differences in their progeny and topology of the lineage relationships. These results explore rodent-primate differences and show that primate cortical neurons are generated through complex lineages by a mosaic of precursors, thereby providing an innovative framework for understanding specific features of primate corticogenesis.


Asunto(s)
Linaje de la Célula/fisiología , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Ventrículos Laterales/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Ciclo Celular/fisiología , Células Cultivadas , Proteínas del Ojo/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Macaca fascicularis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/biosíntesis , Proteínas de Dominio T Box/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA