Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(10): 3220-3259, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39044426

RESUMEN

The emergence of adeno-associated virus (AAV)-based gene therapy has brought hope to patients with severe monogenic disorders. However, immune responses to AAV vectors and transgene products present challenges that require effective immunosuppressive strategies. This systematic review focuses on the immunosuppressive protocols used in 38 clinical trials and 35 real-world studies, considering a range of monogenic diseases, AAV serotypes, and administration routes. The review underscores the need for a deeper understanding of immunosuppressive regimens to enhance the safety and effectiveness of AAV-based gene therapy. Characterizing the immunological responses associated with various gene therapy treatments is crucial for optimizing treatment protocols and ensuring the safety and efficacy of forthcoming gene therapy interventions. Further research and understanding of the impact of immunosuppression on disease, therapy, and route of administration will contribute to the development of more effective and safer gene therapy approaches in the future.


Asunto(s)
Dependovirus , Terapia Genética , Vectores Genéticos , Inmunosupresores , Humanos , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Inmunosupresores/uso terapéutico , Enfermedades Genéticas Congénitas/terapia , Enfermedades Genéticas Congénitas/genética , Ensayos Clínicos como Asunto , Transgenes , Terapia de Inmunosupresión/métodos
2.
Hum Mol Genet ; 28(3): 396-406, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30281092

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids-the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah-/-;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah-/-;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah-/-;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah-/-;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah-/-;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics.


Asunto(s)
Citidina Monofosfato/genética , Distrofina/deficiencia , Morfolinos/uso terapéutico , Animales , Cardiomiopatía Dilatada/genética , Carnitina O-Palmitoiltransferasa/genética , Factor de Crecimiento del Tejido Conjuntivo/análisis , Citidina Monofosfato/fisiología , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Exones , Terapia Genética/métodos , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos mdx , Oxigenasas de Función Mixta/metabolismo , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , NADPH Oxidasa 4/análisis , Oligonucleótidos Antisentido/genética , Péptidos/genética , Fenotipo , Volumen Sistólico , Proteína Desacopladora 3/genética , Función Ventricular Derecha
3.
Hum Mol Genet ; 27(20): 3582-3597, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29982483

RESUMEN

Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica , Luz , Atrofia Muscular Espinal/metabolismo , Animales , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/genética
4.
Hum Mol Genet ; 25(18): 3960-3974, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466195

RESUMEN

MyomiRs are muscle-specific microRNAs (miRNAs) that regulate myoblast proliferation and differentiation. Extracellular myomiRs (ex-myomiRs) are highly enriched in the serum of Duchenne Muscular Dystrophy (DMD) patients and dystrophic mouse models and consequently have potential as disease biomarkers. The biological significance of miRNAs present in the extracellular space is not currently well understood. Here we demonstrate that ex-myomiR levels are elevated in perinatal muscle development, during the regenerative phase that follows exercise-induced myoinjury, and concomitant with myoblast differentiation in culture. Whereas ex-myomiRs are progressively and specifically released by differentiating human primary myoblasts and C2C12 cultures, chemical induction of apoptosis in C2C12 cells results in indiscriminate miRNA release. The selective release of myomiRs as a consequence of cellular differentiation argues against the idea that they are solely waste products of muscle breakdown, and suggests they may serve a biological function in specific physiological contexts. Ex-myomiRs in culture supernatant and serum are predominantly non-vesicular, and their release is independent of ceramide-mediated vesicle secretion. Furthermore, ex-myomiRs levels are reduced in aged dystrophic mice, likely as a consequence of chronic muscle wasting. In conclusion, we show that myomiR release accompanies periods of myogenic differentiation in cell culture and in vivo. Serum myomiR abundance is therefore a function of the regenerative/degenerative status of the muscle, overall muscle mass, and tissue expression levels. These findings have implications for the use of ex-myomiRs as biomarkers for DMD disease progression and monitoring response to therapy.


Asunto(s)
MicroARNs/genética , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Espacio Extracelular/genética , Humanos , Ratones , MicroARNs/sangre , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/patología , Mioblastos/metabolismo , Mioblastos/patología , Especificidad de Órganos , Cultivo Primario de Células
5.
Hum Mol Genet ; 24(15): 4225-37, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25935000

RESUMEN

Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model.


Asunto(s)
Péptidos de Penetración Celular/genética , Distrofina/biosíntesis , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , Oligonucleótidos Antisentido/genética , Animales , Péptidos de Penetración Celular/administración & dosificación , Modelos Animales de Enfermedad , Distrofina/genética , Regulación de la Expresión Génica/efectos de los fármacos , Terapia Genética , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/administración & dosificación
8.
Molecules ; 20(5): 8823-55, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25988613

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by their second decade, one of the main causes of death. The absence of dystrophin in the heart renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it pathologically alters intracellular calcium (Ca2+) concentration, neuronal nitric oxide synthase (nNOS) localization and mitochondrial function and leads to inflammation and necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat symptoms and therefore the need for targeting the genetic defect is immense. Several preclinical therapies are undergoing development, including utrophin up-regulation, stop codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some of these therapies are undergoing clinical trials, but these have predominantly focused on skeletal muscle correction. However, improving skeletal muscle function without addressing cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential that preclinical and clinical focus include improving heart function. This review consolidates what is known regarding molecular pathology of the DMD heart, specifically focusing on intracellular Ca2+, nNOS and mitochondrial dysregulation. It briefly discusses the current treatment options and then elaborates on the preclinical therapeutic approaches currently under development to restore dystrophin thereby improving pathology, with a focus on the heart.


Asunto(s)
Cardiomiopatías/patología , Distrofia Muscular de Duchenne/patología , Animales , Humanos
9.
Biol Proced Online ; 16(1): 5, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24629058

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short RNA molecules which regulate gene expression in eukaryotic cells, and are abundant and stable in biofluids such as blood serum and plasma. As such, there has been heightened interest in the utility of extracellular miRNAs as minimally invasive biomarkers for diagnosis and monitoring of a wide range of human pathologies. However, quantification of extracellular miRNAs is subject to a number of specific challenges, including the relatively low RNA content of biofluids, the possibility of contamination with serum proteins (including RNases and PCR inhibitors), hemolysis, platelet contamination/activation, a lack of well-established reference miRNAs and the biochemical properties of miRNAs themselves. Protocols for the detection and quantification of miRNAs in biofluids are therefore of high interest. RESULTS: The following protocol was validated by quantifying miRNA abundance in C57 (wild-type) and dystrophin-deficient (mdx) mice. Important differences in miRNA abundance were observed depending on whether blood was taken from the jugular or tail vein. Furthermore, efficiency of miRNA recovery was reduced when sample volumes greater than 50 µl were used. CONCLUSIONS: Here we describe robust and novel procedures to harvest murine serum/plasma, extract biofluid RNA, amplify specific miRNAs by RT-qPCR and analyze the resulting data, enabling the determination of relative and absolute miRNA abundance in extracellular biofluids with high accuracy, specificity and sensitivity.

10.
Hum Mol Genet ; 20(3): 413-21, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21062902

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused, in most cases, by the complete absence of the 427 kDa cytoskeletal protein, dystrophin. There is no effective treatment, and affected individuals die from respiratory failure and cardiomyopathy by age 30. Here, we investigated whether cardiomyopathy could be prevented in animal models of DMD by increasing diaphragm utrophin or dystrophin expression and thereby restoring diaphragm function. In a transgenic mdx mouse, where utrophin was over expressed in the skeletal muscle and the diaphragm, but not in the heart, we found cardiac function, specifically right and left ventricular ejection fraction as measured using in vivo magnetic resonance imaging, was restored to wild-type levels. In mdx mice treated with a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) that resulted in high levels of dystrophin restoration in the skeletal muscle and the diaphragm only, cardiac function was also restored to wild-type levels. In dystrophin/utrophin-deficient double-knockout (dKO) mice, a more severely affected animal model of DMD, treatment with a PPMO again produced high levels of dystrophin only in the skeletal muscle and the diaphragm, and once more restored cardiac function to wild-type levels. In the dKO mouse, there was no difference in heart function between treatment of the diaphragm plus the heart and treatment of the diaphragm alone. Restoration of diaphragm and other respiratory muscle function, irrespective of the method used, was sufficient to prevent cardiomyopathy in dystrophic mice. This novel mechanism of treating respiratory muscles to prevent cardiomyopathy in dystrophic mice warrants further investigation for its implications on the need to directly treat the heart in DMD.


Asunto(s)
Cardiomiopatías/prevención & control , Diafragma/fisiopatología , Distrofina/metabolismo , Morfolinas/farmacología , Distrofia Muscular Animal/tratamiento farmacológico , Utrofina/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Diafragma/efectos de los fármacos , Diafragma/metabolismo , Distrofina/genética , Corazón/fisiopatología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Ratones Transgénicos , Morfolinos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/fisiopatología , Volumen Sistólico , Utrofina/genética
11.
Mol Ther ; 19(7): 1295-303, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21505427

RESUMEN

Induced splice modulation of pre-mRNAs shows promise to correct aberrant disease transcripts and restore functional protein and thus has therapeutic potential. Duchenne muscular dystrophy (DMD) results from mutations that disrupt the DMD gene open reading frame causing an absence of dystrophin protein. Antisense oligonucleotide (AO)-mediated exon skipping has been shown to restore functional dystrophin in mdx mice and DMD patients treated intramuscularly in two recent phase 1 clinical trials. Critical to the therapeutic success of AO-based treatment will be the ability to deliver AOs systemically to all affected tissues including the heart. Here, we report identification of a series of transduction peptides (Pip5) as AO conjugates for enhanced systemic and particularly cardiac delivery. One of the lead peptide-AO conjugates, Pip5e-AO, showed highly efficient exon skipping and dystrophin production in mdx mice with complete correction of the aberrant DMD transcript in heart, leading to >50% of the normal level of dystrophin in heart. Mechanistic studies indicated that the enhanced activity of Pip5e-phosphorodiamidate morpholino (PMO) is partly explained by more efficient nuclear delivery. Pip5 series derivatives therefore have significant potential for advancing the development of exon skipping therapies for DMD and may have application for enhanced cardiac delivery of other biotherapeutics.


Asunto(s)
Exones/genética , Miocardio/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Péptidos/genética , Péptidos/metabolismo , Animales , Western Blotting , Inmunohistoquímica , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Transducción Genética
12.
Hum Mol Genet ; 18(22): 4405-14, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19692354

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene that abolish the synthesis of dystrophin protein. Antisense oligonucleotides (AOs) targeted to trigger excision of an exon bearing a mutant premature stop codon in the DMD transcript have been shown to skip the mutated exon and partially restore functional dystrophin protein in dystrophin-deficient mdx mice. To fully exploit the therapeutic potential of this method requires highly efficient systemic AO delivery to multiple muscle groups, to modify the disease process and restore muscle function. While systemic delivery of naked AOs in DMD animal models requires high doses and is of relatively poor efficiency, we and others have recently shown that short arginine-rich peptide-AO conjugates can dramatically improve in vivo DMD splice correction. Here we report for the first time that a chimeric fusion peptide (B-MSP-PMO) consisting of a muscle-targeting heptapeptide (MSP) fused to an arginine-rich cell-penetrating peptide (B-peptide) and conjugated to a morpholino oligomer (PMO) AO directs highly efficient systemic dystrophin splice correction in mdx mice. With very low systemic doses, we demonstrate that B-MSP-PMO restores high-level, uniform dystrophin protein expression in multiple peripheral muscle groups, yielding functional correction and improvement of the mdx dystrophic phenotype. Our data demonstrate proof-of-concept for this chimeric peptide approach in DMD splice correction therapy and is likely to have broad application.


Asunto(s)
Empalme Alternativo , Distrofina/genética , Terapia Genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/uso terapéutico , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones , Humanos , Ratones , Ratones Endogámicos mdx , Datos de Secuencia Molecular , Morfolinas/síntesis química , Morfolinas/uso terapéutico , Morfolinos , Distrofia Muscular de Duchenne/metabolismo , Oligonucleótidos Antisentido/síntesis química
13.
Mol Ther ; 18(10): 1822-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20700113

RESUMEN

Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.


Asunto(s)
Distrofina/deficiencia , Morfolinas/uso terapéutico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Péptidos/uso terapéutico , Animales , Western Blotting , Distrofina/genética , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Morfolinas/química , Morfolinos , Distrofia Muscular de Duchenne/metabolismo , Péptidos/química , Reacción en Cadena de la Polimerasa
14.
Mol Ther ; 18(4): 819-27, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20068555

RESUMEN

Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy.


Asunto(s)
Empalme Alternativo , Distrofina/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/genética , Ácidos Nucleicos de Péptidos/genética , Reparación del Gen Blanco/métodos , Animales , Exones , Vectores Genéticos , Ratones , Ratones Endogámicos mdx
15.
Life Sci Alliance ; 4(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34389686

RESUMEN

Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.


Asunto(s)
Distrofina/metabolismo , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Actinas/metabolismo , Animales , Línea Celular , Distrofina/genética , Ratones , Mioblastos Esqueléticos/metabolismo , Utrofina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
16.
J Gene Med ; 12(4): 354-64, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20235089

RESUMEN

BACKGROUND: Targeted splice modulation of pre-mRNA transcripts by antisense oligonucleotides (AOs) can correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) arises as a result of mutations that interrupt the open-reading frame in the DMD gene encoding dystrophin such that dystrophin protein is absent, leading to fatal muscle degeneration. AOs have been shown to correct this dystrophin defect via exon skipping to yield functional dystrophin protein in animal models of DMD and also in DMD patients via intramuscular administration. To advance this therapeutic method requires increased exon skipping efficiency via an optimized AO sequence, backbone chemistry and additional modifications, and the improvement of methods for evaluating AO efficacy. METHODS: In the present study, we establish the conditions for rapid in vitro AO screening in H(2)K muscle cells, in which we evaluate the exon skipping properties of a number of known and novel AO chemistries [2'-O-methyl, peptide nucleic acid, phosphorodiamidate morpholino (PMO)] and their peptide-conjugated derivatives and correlate their in vitro and in vivo exon skipping activities. RESULTS: The present study demonstrates that using AO concentrations of 300 nM with analysis at a single time-point of 24 h post-transfection allowed the effective in vitro screening of AO compounds to yield data predictive of in vivo exon skipping efficacy. Peptide-conjugated PMO AOs provided the highest in vitro activity. We also show for the first time that the feasibility of rapid AO screening extends to primary cardiomyocytes. CONCLUSIONS: In vitro screening of different AOs within the same chemical class is a reliable method for predicting the in vivo exon skipping efficiency of AOs for DMD.


Asunto(s)
Empalme Alternativo , Distrofina/genética , Exones/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/terapia , Oligonucleótidos Antisentido/genética , Precursores del ARN/genética , Transcripción Genética/genética , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Cartilla de ADN/genética , Humanos , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Endogámicos mdx , Datos de Secuencia Molecular , Distrofia Muscular de Duchenne/genética , Miocitos Cardíacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
17.
J Cachexia Sarcopenia Muscle ; 11(2): 578-593, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31849191

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. METHODS: Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-XistΔhs mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-XistΔhs mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin western blot and immunofluorescence staining. RESULTS: The restoration of ex-myomiR abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-XistΔhs group, despite these animals expressing similar amounts of total dystrophin protein (~37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-XistΔhs mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-XistΔhs muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. CONCLUSIONS: Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.


Asunto(s)
Distrofina/metabolismo , MicroARNs/metabolismo , Sarcolema/metabolismo , Animales , Niño , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Sarcolema/patología
18.
Nucleic Acid Ther ; 29(1): 1-12, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30307373

RESUMEN

The review starts with a historical perspective of the achievements of the Gait group in synthesis of oligonucleotides (ONs) and their peptide conjugates toward the award of the 2017 Oligonucleotide Therapeutic Society Lifetime Achievement Award. This acts as a prelude to the rewarding collaborative studies in the Gait and Wood research groups aimed toward the enhanced delivery of charge neutral ON drugs and the development of a series of Arg-rich cell-penetrating peptides called Pip (peptide nucleic acid/phosphorodiamidate morpholino oligonucleotide [PNA/PMO] internalization peptides) as conjugates of such ONs. In this review we concentrate on these developments toward the treatment of the neuromuscular diseases Duchenne muscular dystrophy and spinal muscular atrophy toward a platform technology for the enhancement of cellular and in vivo delivery suitable for widespread use as neuromuscular and neurodegenerative ON drugs.


Asunto(s)
Péptidos de Penetración Celular/uso terapéutico , Atrofia Muscular Espinal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Enfermedades Neuromusculares/tratamiento farmacológico , Péptidos de Penetración Celular/genética , Humanos , Morfolinos/genética , Morfolinos/uso terapéutico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/patología , Ácidos Nucleicos de Péptidos/genética , Ácidos Nucleicos de Péptidos/uso terapéutico
19.
PLoS One ; 13(6): e0198897, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29912990

RESUMEN

Cardiac failure is a major cause of mortality in patients with Duchenne muscular dystrophy (DMD). Antisense-mediated exon skipping has the ability to correct out-of-frame mutations in DMD to produce truncated but functional dystrophin. Traditional antisense approaches have however been limited by their poor uptake into cardiac muscle. The addition of cell-penetrating peptides to antisense molecules has increased their potency and improved their uptake into all muscles, including the heart. We have investigated the efficacy of the Peptide-conjugated phosphodiamidate morpholino oligomer (P-PMO) Pip6a-PMO, for restoration of cardiac dystrophin and functional rescue in DMD mice- the mdx mouse and the less well characterised Cmah-/-mdx mouse (which carry a human-like mutation in the mouse Cmah gene as well as a mutation in DMD). In our first study male mdx mice were administered Pip6a-PMO, i.v, fortnightly from 12 to 30 weeks of age alongside mock-injected age-matched mdx and C57BL10 controls. Mice received 4 doses of 18 mg/kg followed by 8 doses of 12.5 mg/kg. The cardiac function of the mice was analysed 2 weeks after their final injection by MRI followed by conductance catheter and their muscles were harvested for dystrophin quantification. In the second study, male Cmah-/-mdx mice, received 12.5 mg/kg Pip6a-PMO, i.v fortnightly from 8 to 26 weeks and assessed by MRI at 3 time points (12, 18 and 28 weeks) alongside mock-injected age-matched mdx, C57BL10 and Cmah-/-mdx controls. The mice also underwent MEMRI and conductance catheter at 28 weeks. This allowed us to characterise the cardiac phenotype of Cmah-/-mdx mice as well as assess the effects of P-PMO on cardiac function. Pip6a-PMO treatment resulted in significant restoration of dystrophin in mdx and Cmah-/-mdx mice (37.5% and 51.6%, respectively), which was sufficient to significantly improve cardiac function, ameliorating both right and left ventricular dysfunction. Cmah-/-mdx mice showed an abnormal response to dobutamine stress test and this was completely ameliorated by PIP6a-PMO treatment. These encouraging data suggest that total restoration of dystrophin may not be required to significantly improve cardiac outcome in DMD patients and that it may be realistic to expect functional improvements with modest levels of dystrophin restoration which may be very achievable in future clinical trials.


Asunto(s)
Péptidos de Penetración Celular/uso terapéutico , Insuficiencia Cardíaca/etiología , Morfolinos/uso terapéutico , Distrofia Muscular de Duchenne/complicaciones , Animales , Modelos Animales de Enfermedad , Distrofina/metabolismo , Exones/genética , Mutación del Sistema de Lectura/genética , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Miocardio/metabolismo
20.
EBioMedicine ; 31: 226-242, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29735415

RESUMEN

The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn-/-;SMN2 and Smn2B/- mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Proteínas de Unión al ADN , Suplementos Dietéticos , Atrofia Muscular Espinal , Prednisolona/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción de Tipo Kruppel , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA