Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34732584

RESUMEN

Widespread human SARS-CoV-2 infections combined with human-wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have angiotensin-converting enzyme 2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, exhibit social behavior, and can be abundant near urban centers. We evaluated 624 prepandemic and postpandemic serum samples from wild deer from four US states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2021 using a surrogate virus neutralization test. A subset of samples tested with a SARS-CoV-2 virus neutralization test showed high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.


Asunto(s)
Ciervos/virología , SARS-CoV-2/aislamiento & purificación , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Great Lakes Region/epidemiología , Estudios Seroepidemiológicos
2.
Ecol Appl ; 33(7): e2906, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37522765

RESUMEN

Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low-pathogenicity influenza viruses that ultimately cause high-pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large-scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A-positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species are likely to freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Gripe Aviar/epidemiología , Aves , Aves de Corral , Animales Salvajes
3.
Emerg Infect Dis ; 28(5): 1006-1011, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302933

RESUMEN

We detected Eurasian-origin highly pathogenic avian influenza A(H5N1) virus belonging to the Gs/GD lineage, clade 2.3.4.4b, in wild waterfowl in 2 Atlantic coastal states in the United States. Bird banding data showed widespread movement of waterfowl within the Atlantic Flyway and between neighboring flyways and northern breeding grounds.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Animales Salvajes , Aves , Humanos , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Estados Unidos/epidemiología
4.
Glob Chang Biol ; 28(3): 753-769, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34796590

RESUMEN

After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we test whether animal and human data suggest that plague reservoirs and spillover risk have shifted since 1950. To do so, we develop a new method for detecting the impact of climate change on infectious disease distributions, capable of disentangling long-term trends (signal) and interannual variation in both weather and sampling (noise). We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs-with suitability increasing up to 40% in some places-and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.


Asunto(s)
Peste , Yersinia pestis , Animales , Cambio Climático , Peste/epidemiología , Roedores , Estudios Seroepidemiológicos , Estados Unidos/epidemiología
5.
Emerg Infect Dis ; 24(7): 1390-1392, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29912697

RESUMEN

Porcine epidemic diarrhea virus, a pathogen first detected in US domestic swine in 2013, has rapidly spilled over into feral swine populations. A better understanding of the factors associated with pathogen emergence is needed to better manage, and ultimately prevent, future spillover events from domestic to nondomestic animals.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Coronavirus , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Animales , Estudios Seroepidemiológicos , Porcinos , Estados Unidos/epidemiología
6.
J Clin Microbiol ; 56(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29695520

RESUMEN

Yersinia pestis is the causative agent of plague and is considered a category A priority pathogen due to its potential for high transmissibility and the significant morbidity and mortality it causes in humans. Y. pestis is endemic to the western United States and much of the world, necessitating programs to monitor for this pathogen on the landscape. Elevated human risk of plague infection has been spatially correlated with spikes in seropositive wildlife numbers, particularly rodent-eating carnivores, which are frequently in contact with the enzootic hosts and the associated arthropod vectors of Y. pestis In this study, we describe a semiautomated bead-based flow cytometric assay developed for plague monitoring in wildlife called the F1 Luminex plague assay (F1-LPA). Based upon Luminex/Bio-Plex technology, the F1-LPA targets serological responses to the F1 capsular antigen of Y. pestis and was optimized to analyze antibodies eluted from wildlife blood samples preserved on Nobuto filter paper strips. In comparative evaluations with passive hemagglutination, the gold standard tool for wildlife plague serodiagnosis, the F1-LPA demonstrated as much as 64× improvement in analytical sensitivity for F1-specific IgG detection and allowed for unambiguous classification of IgG status. The functionality of the F1-LPA was demonstrated for coyotes and other canids, which are the primary sentinels in wildlife plague monitoring, as well as felids and raccoons. Additionally, assay formats that do not require species-specific immunological reagents, which are not routinely available for several wildlife species used in plague monitoring, were determined to be functional in the F1-LPA.


Asunto(s)
Animales Salvajes , Monitoreo Epidemiológico/veterinaria , Citometría de Flujo/métodos , Peste/veterinaria , Yersinia pestis , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Pruebas de Inhibición de Hemaglutinación , Pruebas de Hemaglutinación , Inmunoensayo , Peste/sangre , Peste/diagnóstico , Peste/microbiología , Reproducibilidad de los Resultados , Yersinia pestis/inmunología
7.
Vet Res ; 48(1): 68, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29073919

RESUMEN

Newcastle disease is caused by virulent strains of Newcastle disease virus (NDV), which causes substantial morbidity and mortality events worldwide in poultry. The virus strains can be differentiated as lentogenic, mesogenic, or velogenic based on a mean death time in chicken embryos. Currently, velogenic strains of NDV are not endemic in United States domestic poultry; however, these strains are present in other countries and are occasionally detected in wild birds in the U.S. A viral introduction into domestic poultry could have severe economic consequences due to the loss of production from sick and dying birds, the cost of control measures such as depopulation and disinfection measures, and the trade restrictions that would likely be imposed as a result of an outbreak. Due to the disease-free status of the U.S. and the high cost of a potential viral incursion to the poultry industry, a qualitative risk analysis was performed to evaluate the vulnerabilities of the U.S. against the introduction of virulent strains of NDV. The most likely routes of virus introduction are explored and data gathered by several federal agencies is provided. Recommendations are ultimately provided for data that would be useful to further understand NDV on the landscape and to utilize all existing sampling opportunities to begin to comprehend viral movement and further characterize the risk of NDV introduction into the U.S.


Asunto(s)
Aves , Enfermedad de Newcastle/transmisión , Virus de la Enfermedad de Newcastle/fisiología , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/transmisión , Animales , Animales Salvajes , Enfermedad de Newcastle/virología , Enfermedades de las Aves de Corral/virología , Medición de Riesgo , Estados Unidos , Virulencia
8.
Vet Res ; 48(1): 77, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29145872

RESUMEN

After publication of the article [1], it has been brought to our attention that Newcastle disease virus was incorrectly labeled as a Tier 1 USDA Select Agent. Newcastle disease virus is a USDA Select Agent but it is not a Tier 1 agent.

9.
Ecol Appl ; 26(2): 367-81, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27209780

RESUMEN

Understanding how landscape, host, and pathogen traits contribute to disease exposure requires systematic evaluations of pathogens within and among host species and geographic regions. The relative importance of these attributes is critical for management of wildlife and mitigating domestic animal and human disease, particularly given rapid ecological changes, such as urbanization. We screened > 1000 samples from sympatric populations of puma (Puma concolor), bobcat (Lynx rufus), and domestic cat (Felis catus) across urban gradients in six sites, representing three regions, in North America for exposure to a representative suite of bacterial, protozoal, and viral pathogens (Bartonella sp., Toxoplasma gondii, feline herpesvirus-1, feline panleukopenea virus, feline calicivirus, and feline immunodeficiency virus). We evaluated prevalence within each species, and examined host trait and land cover determinants of exposure; providing an unprecedented analysis of factors relating to potential for infections in domesticated and wild felids. Prevalence differed among host species (highest for puma and lowest for domestic cat) and was greater for indirectly transmitted pathogens. Sex was inconsistently predictive of exposure to directly transmitted pathogens only, and age infrequently predictive of both direct and indirectly transmitted pathogens. Determinants of pathogen exposure were widely divergent between the wild felid species. For puma, suburban land use predicted increased exposure to Bartonella sp. in southern California, and FHV-1 exposure increased near urban edges in Florida. This may suggest interspecific transmission with domestic cats via flea vectors (California) and direct contact (Florida) around urban boundaries. Bobcats captured near urban areas had increased exposure to T. gondii in Florida, suggesting an urban source of prey Bobcats captured near urban areas in Colorado and Florida had higher FIV exposure, possibly suggesting increased intraspecific interactions through pile-up of home ranges. Beyond these regional and pathogen specific relationships, proximity to the wildland-urban interface did not generally increase the probability of disease exposure in wild or domestic felids, empha- sizing the importance of local ecological determinants. Indeed, pathogen exposure was often negatively associated with the wildland-urban interface for all felids. Our analyses suggest cross-species pathogen transmission events around this interface may be infrequent, but followed by self-sustaining propagation within the new host species. virus; puma (Puma concolor); Toxoplasma gondii; urbanization.


Asunto(s)
Infecciones por Bartonella/veterinaria , Enfermedades de los Gatos/epidemiología , Toxoplasmosis Animal/epidemiología , Virosis/veterinaria , Animales , Animales Domésticos , Animales Salvajes , Bartonella/aislamiento & purificación , Infecciones por Bartonella/epidemiología , Infecciones por Bartonella/microbiología , Gatos , Felidae , Especificidad de la Especie , Toxoplasma , Toxoplasmosis Animal/parasitología , Estados Unidos/epidemiología , Virosis/epidemiología , Virosis/virología
10.
J Virol ; 88(14): 7727-37, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24741092

RESUMEN

Mountain lions (Puma concolor) throughout North and South America are infected with puma lentivirus clade B (PLVB). A second, highly divergent lentiviral clade, PLVA, infects mountain lions in southern California and Florida. Bobcats (Lynx rufus) in these two geographic regions are also infected with PLVA, and to date, this is the only strain of lentivirus identified in bobcats. We sequenced full-length PLV genomes in order to characterize the molecular evolution of PLV in bobcats and mountain lions. Low sequence homology (88% average pairwise identity) and frequent recombination (1 recombination breakpoint per 3 isolates analyzed) were observed in both clades. Viral proteins have markedly different patterns of evolution; sequence homology and negative selection were highest in Gag and Pol and lowest in Vif and Env. A total of 1.7% of sites across the PLV genome evolve under positive selection, indicating that host-imposed selection pressure is an important force shaping PLV evolution. PLVA strains are highly spatially structured, reflecting the population dynamics of their primary host, the bobcat. In contrast, the phylogeography of PLVB reflects the highly mobile mountain lion, with diverse PLVB isolates cocirculating in some areas and genetically related viruses being present in populations separated by thousands of kilometers. We conclude that PLVA and PLVB are two different viral species with distinct feline hosts and evolutionary histories. Importance: An understanding of viral evolution in natural host populations is a fundamental goal of virology, molecular biology, and disease ecology. Here we provide a detailed analysis of puma lentivirus (PLV) evolution in two natural carnivore hosts, the bobcat and mountain lion. Our results illustrate that PLV evolution is a dynamic process that results from high rates of viral mutation/recombination and host-imposed selection pressure.


Asunto(s)
Genoma Viral , Virus de la Inmunodeficiencia Felina/aislamiento & purificación , Lynx/virología , Puma/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Animales , Análisis por Conglomerados , Evolución Molecular , Variación Genética , Virus de la Inmunodeficiencia Felina/clasificación , Virus de la Inmunodeficiencia Felina/genética , Datos de Secuencia Molecular , América del Norte , Filogeografía , Recombinación Genética , Selección Genética , Proteínas Virales/genética
11.
Avian Dis ; 58(1): 129-36, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24758125

RESUMEN

Since their introduction to the United States in the late 19th century, mute swans (Cygnus olor) have become a nuisance species by causing damage to aquatic habitats, acting aggressively toward humans, competing with native waterfowl, and potentially transmitting or serving as a reservoir of infectious diseases to humans and poultry. In an effort to investigate their potential role as a disease reservoir and to establish avian health baselines for pathogens that threaten agricultural species or human health, we collected samples from 858 mute swans and tested them for avian paramyxovirus serotype 1 (APMV-1), avian influenza virus (AIV), and Salmonella spp. when possible. Our results indicate that exposure to APMV-1 and AIV is common (60%, n = 771, and 45%, n = 344, antibody prevalence, respectively) in mute swans, but detection of active viral shedding is less common (8.7%, n = 414, and 0.8%, n = 390, respectively). Salmonella was isolated from three mute swans (0.6%, n = 459), and although the serovars identified have been implicated in previous human outbreaks, it does not appear that Salmonella is commonly carried by mute swans.


Asunto(s)
Anseriformes , Gripe Aviar/epidemiología , Enfermedad de Newcastle/epidemiología , Virus de la Enfermedad de Newcastle/genética , Salmonelosis Animal/epidemiología , Animales , Recuento de Colonia Microbiana/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Datos de Secuencia Molecular , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Prevalencia , Salmonella/clasificación , Salmonella/aislamiento & purificación , Salmonelosis Animal/microbiología , Estaciones del Año , Análisis de Secuencia de ADN/veterinaria , Estudios Seroepidemiológicos , Serotipificación/veterinaria , Estados Unidos/epidemiología
12.
Virology ; 587: 109860, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572517

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) of the A/goose/Guangdong/1/1996 lineage H5 clade 2.3.4.4b continue to have a devastating effect on domestic and wild birds. Full genome sequence analyses using 1369 H5N1 HPAIVs detected in the United States (U.S.) in wild birds, commercial poultry, and backyard flocks from December 2021 to April 2022, showed three phylogenetically distinct H5N1 virus introductions in the U.S. by wild birds. Unreassorted Eurasian genotypes A1 and A2 entered the Northeast Atlantic states, whereas a genetically distinct A3 genotype was detected in Alaska. The A1 genotype spread westward via wild bird migration and reassorted with North American wild bird avian influenza viruses. Reassortments of up to five internal genes generated a total of 21 distinct clusters; of these, six genotypes represented 92% of the HPAIVs examined. By phylodynamic analyses, most detections in domestic birds were shown to be point-source transmissions from wild birds, with limited farm-to-farm spread.

13.
Nat Commun ; 14(1): 5105, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640694

RESUMEN

The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.


Asunto(s)
COVID-19 , Ciervos , Animales , Humanos , SARS-CoV-2/genética , COVID-19/veterinaria , Teorema de Bayes , Pandemias , Filogenia
14.
J Clin Microbiol ; 50(9): 3080-3, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718941

RESUMEN

We analyzed Lynx rufus fecal parasites from California and Colorado, hypothesizing that bobcats shed zoonotic parasites around human landscapes. Giardia duodenalis, Cryptosporidium, Ancylostoma, Uncinaria, and Toxocara cati were shed. Toxoplasma gondii serology demonstrated exposure. Giardia and Cryptosporidium shedding increased near large human populations. Genotyped Giardia may indicate indirect transmission with humans.


Asunto(s)
Heces/parasitología , Enfermedades Gastrointestinales/veterinaria , Lynx/parasitología , Parásitos/clasificación , Parásitos/aislamiento & purificación , Enfermedades Parasitarias en Animales/parasitología , Animales , California , Colorado , Femenino , Enfermedades Gastrointestinales/parasitología , Humanos , Masculino , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
15.
Transbound Emerg Dis ; 69(5): e2329-e2340, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35490290

RESUMEN

Animal disease surveillance is an important component of the national veterinary infrastructure to protect animal agriculture and facilitates identification of foreign animal disease (FAD) introduction. Once introduced, pathogens shared among domestic and wild animals are especially challenging to manage due to the complex ecology of spillover and spillback. Thus, early identification of FAD in wildlife is critical to minimize outbreak severity and potential impacts on animal agriculture as well as potential impacts on wildlife and biodiversity. As a result, national surveillance and monitoring programs that include wildlife are becoming increasingly common. Designing surveillance systems in wildlife or, more importantly, at the interface of wildlife and domestic animals, is especially challenging because of the frequent lack of ecological and epidemiological data for wildlife species and technical challenges associated with a lack of non-invasive methodologies. To meet the increasing need for targeted FAD surveillance and to address gaps in existing wildlife surveillance systems, we developed an adaptive risk-based targeted surveillance approach that accounts for risks in source and recipient host populations. The approach is flexible, accounts for changing disease risks through time, can be scaled from local to national extents and permits the inclusion of quantitative data or when information is limited to expert opinion. We apply this adaptive risk-based surveillance framework to prioritize areas for surveillance in wild pigs in the United States with the objective of early detection of three diseases: classical swine fever, African swine fever and foot-and-mouth disease. We discuss our surveillance framework, its application to wild pigs and discuss the utility of this framework for surveillance of other host species and diseases.


Asunto(s)
Fiebre Porcina Africana , Fiebre Aftosa , Enfermedades de los Porcinos , Animales , Animales Salvajes , Flavina-Adenina Dinucleótido , Fiebre Aftosa/epidemiología , Ganado , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados Unidos
16.
Transbound Emerg Dis ; 69(5): e3111-e3127, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35881004

RESUMEN

African swine fever virus (ASFv) is a virulent pathogen that threatens domestic swine industries globally and persists in wild boar populations in some countries. Persistence in wild boar can challenge elimination and prevent disease-free status, making it necessary to address wild swine in proactive response plans. In the United States, invasive wild pigs are abundant and found across a wide range of ecological conditions that could drive different epidemiological dynamics among populations. Information on the size of the control areas required to rapidly eliminate the ASFv in wild pigs and how this area should change with management constraints and local ecology is needed to optimize response planning. We developed a spatially explicit disease transmission model contrasting wild pig movement and contact ecology in two ecosystems in Southeastern United States. We simulated ASFv spread and determined the optimal response area (reported as the radius of a circle) for eliminating ASFv rapidly over a range of detection times (when ASFv was detected relative to the true date of introduction), culling capacities (proportion of wild pigs in the culling zone removed weekly) and wild pig densities. Large radii for response areas (14 km) were needed under most conditions but could be shortened with early detection (≤ 8 weeks) and high culling capacities (≥ 15% weekly). Under most conditions, the ASFv was eliminated in less than 22 weeks using optimal control radii, although ecological conditions with high rates of wild pig movement required higher culling capacities (≥ 10% weekly) for elimination within 1 year. The results highlight the importance of adjusting response plans based on local ecology and show that wild pig movement is a better predictor of the optimal response area than the number of ASFv cases early in the outbreak trajectory. Our framework provides a tool for determining optimal control plans in different areas, guiding expectations of response impacts, and planning resources needed for rapid elimination.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/fisiología , Animales , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria , Ecosistema , Sus scrofa , Porcinos
17.
Transbound Emerg Dis ; 69(2): 742-752, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33621417

RESUMEN

Some snow geese (Anser caerulescens) migrate between Eurasia and North America and exhibit high seroprevalence for influenza A viruses (IAVs). Hence, these birds might be expected to play a role in intercontinental dispersal of IAVs. Our objective in this manuscript was to characterize basic incidence and infection characteristics for snow geese to assess whether these birds are likely to significantly contribute to circulation of IAVs. Thus, we 1) estimated snow goose infection prevalence by summarizing > 5,000 snow goose surveillance records, 2) experimentally infected snow geese with a low pathogenic IAV (H4N6) to assess susceptibility and infection dynamics and 3) characterized long-term antibody kinetics. Infection prevalence based on surveillance data for snow geese was 7.88%, higher than the infection rates found in other common North American goose species. In the experimental infection study, only 4 of 7 snow geese shed viral RNA. Shedding in infected birds peaked at moderate levels (mean peak 102.62 EID50 equivalents/mL) and was exclusively associated with the oral cavity. Serological testing across a year post-exposure showed all inoculated birds seroconverted regardless of detectable shedding. Antibody levels peaked at 10 days post-exposure and then waned to undetectable levels by 6 months. In sum, while broad-scale surveillance results showed comparatively high infection prevalence, the experimental infection study showed only moderate susceptibility and shedding. Consequently, additional work is needed to assess whether snow geese might exhibit higher levels of susceptibility and shedding rates when exposed to other IAV strains.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Anticuerpos , Gansos , Gripe Aviar/epidemiología , Estudios Seroepidemiológicos
18.
Sci Rep ; 12(1): 13083, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906292

RESUMEN

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Migración Animal , Animales , Animales Salvajes , Patos , Humanos , Gripe Aviar/epidemiología , Prevalencia , Estados Unidos/epidemiología
19.
Vector Borne Zoonotic Dis ; 21(9): 667-674, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34191632

RESUMEN

Plague is caused by a bacterial pathogen (Yersinia pestis) that can infect a wide range of mammal species, but its presence in wildlife is often underappreciated. Using a large-scale data set (n = 44,857) that details the extent of Y. pestis exposure in wildlife, we document exposure in 18 wildlife species, including coyotes (Canis latrans), bobcats (Lynx rufus), and black bears (Ursus americanus). Evidence of plague activity is widespread, with seropositive animals detected in every western state in the contiguous United States. Pathogen monitoring systems in wildlife that are both large scale and long-term are rare, yet they open the door for analyses on potential shifts in distribution that have occurred over time because of climate or land use changes. The data generated by these long-term monitoring programs, combined with recent advances in our understanding of pathogen ecology, offer a clearer picture of zoonotic pathogens and the risks they pose.


Asunto(s)
Coyotes , Peste , Yersinia pestis , Animales , Animales Salvajes , Peste/epidemiología , Peste/veterinaria , Estados Unidos/epidemiología
20.
Transbound Emerg Dis ; 68(2): 605-614, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32639639

RESUMEN

Haemaphysalis longicornis, the Asian longhorned tick (ALT), is native to eastern Asia, but it has become invasive in several countries, including Australia, New Zealand and recently in the eastern United States (US). To identify wild mammal and avian host species in the US, we conducted active wildlife surveillance in two states with known ALT infestations (Virginia and New Jersey). In addition, we conducted environmental surveys in both states. These surveillance efforts resulted in detection of 51 ALT-infested individuals from seven wildlife species, including raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), red fox (Vulpes vulpes), woodchuck (Marmota monax), eastern cottontail (Sylvilagus floridanus), striped skunk (Mephitis mephitis) and white-tailed deer (Odocoileus virginianus). We found ALT in the environment in both states and also collected three native tick species (Amblyomma americanum, Dermacentor variablis and Ixodes scapularis) that are vectors of pathogens of public health and veterinary importance. This study provides important specific information on the wildlife host range of ALT in the US.


Asunto(s)
Ixodidae/fisiología , Mamíferos , Infestaciones por Garrapatas/veterinaria , Animales , Animales Salvajes , Ixodidae/clasificación , New Jersey , Infestaciones por Garrapatas/parasitología , Virginia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA