Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 205(2): e0039322, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36744900

RESUMEN

Gardnerella spp. are associated with bacterial vaginosis in which normally dominant lactobacilli are replaced with facultative and anaerobic bacteria, including Gardnerella spp. Co-occurrence of multiple species of Gardnerella is common in the vagina, and competition for nutrients such as glycogen likely contributes to the differential abundances of Gardnerella spp. Glycogen must be digested into smaller components for uptake, a process that depends on the combined action of glycogen-degrading enzymes. In this study, the ability of culture supernatants of 15 isolates of Gardnerella spp. to produce glucose, maltose, maltotriose, and maltotetraose from glycogen was demonstrated. Carbohydrate-active enzymes (CAZymes) were identified bioinformatically in Gardnerella proteomes using dbCAN2. Identified proteins included a single-domain α-amylase (EC 3.2.1.1) (encoded by all 15 isolates) and an α-amylase-pullulanase (EC 3.2.1.41) containing amylase, carbohydrate binding modules, and pullulanase domains (14/15 isolates). To verify the sequence-based functional predictions, the amylase and pullulanase domains of the α-amylase-pullulanase and the single-domain α-amylase were each produced in Escherichia coli. The α-amylase domain from the α-amylase-pullulanase released maltose, maltotriose, and maltotetraose from glycogen, and the pullulanase domain released maltotriose from pullulan and maltose from glycogen, demonstrating that the Gardnerella α-amylase-pullulanase is capable of hydrolyzing α-1,4 and α-1,6 glycosidic bonds. Similarly, the single-domain α-amylase protein also produced maltose, maltotriose, and maltotetraose from glycogen. Our findings show that Gardnerella spp. produce extracellular amylase enzymes as "public goods" that can digest glycogen into maltose, maltotriose, and maltotetraose that can be used by the vaginal microbiota. IMPORTANCE Increased abundance of Gardnerella spp. is a diagnostic characteristic of bacterial vaginosis, an imbalance in the human vaginal microbiome associated with troubling symptoms, and negative reproductive health outcomes, including increased transmission of sexually transmitted infections and preterm birth. Competition for nutrients is likely an important factor in causing dramatic shifts in the vaginal microbial community, but little is known about the contribution of bacterial enzymes to the metabolism of glycogen, a major food source available to vaginal bacteria. The significance of our research is characterizing the activity of enzymes conserved in Gardnerella species that contribute to the ability of these bacteria to utilize glycogen.


Asunto(s)
Microbiota , Nacimiento Prematuro , Vaginosis Bacteriana , Femenino , Humanos , alfa-Amilasas/metabolismo , Bacterias/metabolismo , Dominio Catalítico , Gardnerella , Glucógeno/metabolismo , Maltosa , Vagina/microbiología , Vaginosis Bacteriana/microbiología
2.
J Bacteriol ; 203(17): e0021321, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34124938

RESUMEN

Gardnerella spp. in the vaginal microbiome are associated with bacterial vaginosis, in which a lactobacillus-dominated community is replaced with mixed bacteria, including Gardnerella species. Co-occurrence of multiple Gardnerella species in the vaginal environment is common, but different species are dominant in different women. Competition for nutrients, including glycogen, could play an important role in determining the microbial community structure. Digestion of glycogen into products that can be taken up and further processed by bacteria requires the combined activities of several enzymes collectively known as amylases, which belong to glycoside hydrolase family 13 (GH13) within the CAZy classification system. GH13 is a large and diverse family of proteins, making prediction of their activities challenging. SACCHARIS annotation of the GH13 family in Gardnerella resulted in identification of protein domains belonging to eight subfamilies. Phylogenetic analysis of predicted amylase sequences from 26 genomes demonstrated that a putative α-glucosidase-encoding sequence, CG400_06090, was conserved in all Gardnerella spp. The predicted α-glucosidase enzyme was expressed, purified, and functionally characterized. The enzyme was active on a variety of maltooligosaccharides with maximum activity at pH 7. Km, kcat, and kcat/Km values for the substrate 4-nitrophenyl α-d-glucopyranoside were 8.3 µM, 0.96 min-1, and 0.11 µM-1 min-1, respectively. Glucose was released from maltose, maltotriose, maltotetraose, and maltopentaose, but no products were detected when the enzyme was incubated with glycogen. Our findings show that Gardnerella spp. produce an α-glucosidase enzyme that may contribute to the multistep process of glycogen metabolism by releasing glucose from maltooligosaccharides. IMPORTANCE Increased abundance of Gardnerella spp. is a diagnostic characteristic of bacterial vaginosis, an imbalance in the human vaginal microbiome associated with troubling symptoms, and negative reproductive health outcomes, including increased transmission of sexually transmitted infections and preterm birth. Competition for nutrients is likely an important factor in causing dramatic shifts in the vaginal microbial community but little is known about the contribution of bacterial enzymes to the metabolism of glycogen, a major carbon source available to vaginal bacteria. The significance of our research is characterizing the activity of an enzyme conserved in Gardnerella species that likely contributes to the ability of these bacteria to utilize glycogen.


Asunto(s)
Proteínas Bacterianas/química , Gardnerella/enzimología , Gardnerella/aislamiento & purificación , Microbiota , Vagina/microbiología , alfa-Glucosidasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Femenino , Gardnerella/clasificación , Gardnerella/genética , Humanos , Concentración de Iones de Hidrógeno , Cinética , Filogenia , Alineación de Secuencia , Temperatura , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
3.
Microbiol Spectr ; : e0443522, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920187

RESUMEN

Multiple Gardnerella species frequently cooccur in vaginal microbiomes, and several factors, including competition for nutrients such as glycogen could determine their population structure. Although Gardnerella spp. can hydrolyze glycogen to produce glucose, maltose, maltotriose, and maltotetraose, how these sugars are transported and utilized for growth is unknown. We determined the distribution of genes encoding transporter proteins associated with the uptake of glucose, maltose, and malto-oligosaccharides and maltodextrins among Gardnerella species. A total of five different ABC transporters were identified in Gardnerella spp. of which MusEFGK2I and MalXFGK were conserved across all 15 Gardnerella isolates. RafEFGK and TMSP (trehalose, maltose, sucrose, and palatinose) operons were specific to G. vaginalis while the MalEFG transporter was identified in G. leopoldii only. Although no glucose specific sugar-symporters were identified, putative "glucose/galactose porters" and components of a phosphotransferase system were identified. In laboratory experiments, all Gardnerella isolates grew more in the presence of glucose, maltose, maltotriose, and maltotetraose compared to unsupplemented media. In addition, most isolates (10/15) showed significantly more growth on maltotetraose compared to glucose (Kruskal Wallis, P < 0.05) suggesting their preference for longer chain malto-oligosaccharides. Our findings show that although putative MusEFGK2I and MalXFGK transporters are found in all Gardnerella spp., some species-specific transporters are also present. Observed distribution of genes encoding transporter systems was consistent with laboratory observations that Gardnerella spp. grow better on longer chain malto-oligosaccharides. IMPORTANCE Increased abundance of Gardnerella spp. is a diagnostic characteristic of bacterial vaginosis, an imbalance in the human vaginal microbiome associated with troubling symptoms and negative reproductive health outcomes, including increased transmission of sexually transmitted infections and preterm birth. Competition for nutrients is likely an important factor in causing dramatic shifts in the vaginal microbial community. Gardnerella produces enzymes to digest glycogen, an important nutrient source for vaginal bacteria, but little is known about the mechanisms in Gardnerella for uptake of the products of this digestion, or whether Gardnerella use some or all of the products. Our results indicate that Gardnerella may have evolved to preferentially use a subset of the glycogen breakdown products, which would help them reduce direct competition with some other bacteria in the vagina.

4.
Int J Microbiol ; 2015: 572163, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26587024

RESUMEN

Multidrug resistant organisms are increasing day by day and the cause is poorly known. This study was carried out from June 2011 to May 2012 at National Institute of Neurological and Allied Sciences Kathmandu, Nepal, with a view to determining drug resistant pathogens along with detection of extended spectrum ß-lactamase (ESBL), AmpC ß-lactamase (ABL), and metallo-ß-lactamase (MBL) producing bacteria causing infection to ICU patients. A standard methodology was used to achieve these objectives as per recommendation of American Society for Microbiology. ESBL was detected by combined disc assay using cefotaxime and cefotaxime clavulanic acid, ABL by inhibitor based method using cefoxitin and phenylboronic acid, and MBL by imipenem-EDTA combined disk method. Two hundred and ninety-four different clinical samples such as tracheal aspirates, urine, pus, swabs, catheter tips, and blood were processed during the study. Most common bacteria were Acinetobacter spp. Of the total 58 Acinetobacter spp., 46 (79%) were MDR, and 27% were positive for ABL and 12% were for MBL. Of the 32 cases of Staphylococcus aureus, 18 (56%) were MDR. Findings of this study warrant routine ß-lactamase testing in clinical isolates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA